Response of kelps from different latitudes to consecutive heat shock

Detalhes bibliográficos
Autor(a) principal: Pereira, Tania R.
Data de Publicação: 2015
Outros Autores: Engelen, Aschwin H., Pearson, Gareth, Valero, Myriam, Serrao, Ester A.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10400.1/11281
Resumo: Although extensive work has focused on kelp responses to constant temperature, little is known about their response to the consecutive temperature shocks they are often exposed to in the shallow subtidal and intertidal pools. Here we characterized the responses of the two southernmost forest-forming kelp species in the Northeast Atlantic, Laminaria ochroleuca De La Pylaie and Saccorhiza polyschides (Lightf.) Batt. to multiple cycles of thermal stress. Individuals from the upper vertical limit of the geographical distribution edges where the two species co-occur forming forests, France and Portugal, were exposed to 4 consecutive cycles of thermal shock simulating a spring tide. A 24 h cycle consisted of culture at 15 degrees C, plus 1 h heat shock at one of five levels (20, 22.5, 25, 27.5 or 30 degrees C). The maximum quantum yield (Fv/Fm) of chlorophyll fluorescence of photosystem 2 (PS2) was used to detect impaired reaction center function, as a proxy for individual fitness costs, during recovery from heat shock. Both species showed resilience to temperatures from 20 to 25 degrees C. While exposure to 27.5 degrees C caused no inhibition to Fv/Fm of S. polyschides, a threshold was met above this temperature and exposure to 30 degrees C caused the death of all individuals. In contrast, L ochroleuca from France was damaged but able to survive 30 degrees C shocks and individuals from Portugal showed complete resilience to this treatment. In both species, blade elongation decreased with increasing temperature, with necrosis surpassing growth at higher temperatures. Resilience to high temperature exposure may confer an advantage to L ochroleuca to colonize intertidal pools on the Portuguese coast, in agreement with the observation that both species recruit in tide pools but only L ochroleuca reach adulthood. Our results indicate that as summer temperatures increase with climate change, the disappearance of S. polyschides from intertidal pools and a decrease in the density of L ochroleuca can be expected. (C) 2014 Elsevier B.V. All rights reserved.
id RCAP_904ca6acba7649a77e6de048ac849179
oai_identifier_str oai:sapientia.ualg.pt:10400.1/11281
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Response of kelps from different latitudes to consecutive heat shockClimate-changeLaminaria-OchroleucaYoung SporophytesSaccorhiza-PolyschidesTemperature toleranceLife-historiesBrown seaweedsNorth-seaPhaeophytaGradientAlthough extensive work has focused on kelp responses to constant temperature, little is known about their response to the consecutive temperature shocks they are often exposed to in the shallow subtidal and intertidal pools. Here we characterized the responses of the two southernmost forest-forming kelp species in the Northeast Atlantic, Laminaria ochroleuca De La Pylaie and Saccorhiza polyschides (Lightf.) Batt. to multiple cycles of thermal stress. Individuals from the upper vertical limit of the geographical distribution edges where the two species co-occur forming forests, France and Portugal, were exposed to 4 consecutive cycles of thermal shock simulating a spring tide. A 24 h cycle consisted of culture at 15 degrees C, plus 1 h heat shock at one of five levels (20, 22.5, 25, 27.5 or 30 degrees C). The maximum quantum yield (Fv/Fm) of chlorophyll fluorescence of photosystem 2 (PS2) was used to detect impaired reaction center function, as a proxy for individual fitness costs, during recovery from heat shock. Both species showed resilience to temperatures from 20 to 25 degrees C. While exposure to 27.5 degrees C caused no inhibition to Fv/Fm of S. polyschides, a threshold was met above this temperature and exposure to 30 degrees C caused the death of all individuals. In contrast, L ochroleuca from France was damaged but able to survive 30 degrees C shocks and individuals from Portugal showed complete resilience to this treatment. In both species, blade elongation decreased with increasing temperature, with necrosis surpassing growth at higher temperatures. Resilience to high temperature exposure may confer an advantage to L ochroleuca to colonize intertidal pools on the Portuguese coast, in agreement with the observation that both species recruit in tide pools but only L ochroleuca reach adulthood. Our results indicate that as summer temperatures increase with climate change, the disappearance of S. polyschides from intertidal pools and a decrease in the density of L ochroleuca can be expected. (C) 2014 Elsevier B.V. All rights reserved.ASSEMBLE (ASSociation of European Marine Biological Laboratories) [227799]; Portuguese Science and Technology Foundation (FCT); FCT [PTDC/AAC-CLI/109108/2008, EXCL/AAG-GLO/0661/2012]Elsevier Science BvSapientiaPereira, Tania R.Engelen, Aschwin H.Pearson, GarethValero, MyriamSerrao, Ester A.2018-12-07T14:52:57Z2015-022015-02-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.1/11281eng0022-098110.1016/j.jembe.2014.10.022info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-24T10:23:03Zoai:sapientia.ualg.pt:10400.1/11281Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T20:02:48.515327Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Response of kelps from different latitudes to consecutive heat shock
title Response of kelps from different latitudes to consecutive heat shock
spellingShingle Response of kelps from different latitudes to consecutive heat shock
Pereira, Tania R.
Climate-change
Laminaria-Ochroleuca
Young Sporophytes
Saccorhiza-Polyschides
Temperature tolerance
Life-histories
Brown seaweeds
North-sea
Phaeophyta
Gradient
title_short Response of kelps from different latitudes to consecutive heat shock
title_full Response of kelps from different latitudes to consecutive heat shock
title_fullStr Response of kelps from different latitudes to consecutive heat shock
title_full_unstemmed Response of kelps from different latitudes to consecutive heat shock
title_sort Response of kelps from different latitudes to consecutive heat shock
author Pereira, Tania R.
author_facet Pereira, Tania R.
Engelen, Aschwin H.
Pearson, Gareth
Valero, Myriam
Serrao, Ester A.
author_role author
author2 Engelen, Aschwin H.
Pearson, Gareth
Valero, Myriam
Serrao, Ester A.
author2_role author
author
author
author
dc.contributor.none.fl_str_mv Sapientia
dc.contributor.author.fl_str_mv Pereira, Tania R.
Engelen, Aschwin H.
Pearson, Gareth
Valero, Myriam
Serrao, Ester A.
dc.subject.por.fl_str_mv Climate-change
Laminaria-Ochroleuca
Young Sporophytes
Saccorhiza-Polyschides
Temperature tolerance
Life-histories
Brown seaweeds
North-sea
Phaeophyta
Gradient
topic Climate-change
Laminaria-Ochroleuca
Young Sporophytes
Saccorhiza-Polyschides
Temperature tolerance
Life-histories
Brown seaweeds
North-sea
Phaeophyta
Gradient
description Although extensive work has focused on kelp responses to constant temperature, little is known about their response to the consecutive temperature shocks they are often exposed to in the shallow subtidal and intertidal pools. Here we characterized the responses of the two southernmost forest-forming kelp species in the Northeast Atlantic, Laminaria ochroleuca De La Pylaie and Saccorhiza polyschides (Lightf.) Batt. to multiple cycles of thermal stress. Individuals from the upper vertical limit of the geographical distribution edges where the two species co-occur forming forests, France and Portugal, were exposed to 4 consecutive cycles of thermal shock simulating a spring tide. A 24 h cycle consisted of culture at 15 degrees C, plus 1 h heat shock at one of five levels (20, 22.5, 25, 27.5 or 30 degrees C). The maximum quantum yield (Fv/Fm) of chlorophyll fluorescence of photosystem 2 (PS2) was used to detect impaired reaction center function, as a proxy for individual fitness costs, during recovery from heat shock. Both species showed resilience to temperatures from 20 to 25 degrees C. While exposure to 27.5 degrees C caused no inhibition to Fv/Fm of S. polyschides, a threshold was met above this temperature and exposure to 30 degrees C caused the death of all individuals. In contrast, L ochroleuca from France was damaged but able to survive 30 degrees C shocks and individuals from Portugal showed complete resilience to this treatment. In both species, blade elongation decreased with increasing temperature, with necrosis surpassing growth at higher temperatures. Resilience to high temperature exposure may confer an advantage to L ochroleuca to colonize intertidal pools on the Portuguese coast, in agreement with the observation that both species recruit in tide pools but only L ochroleuca reach adulthood. Our results indicate that as summer temperatures increase with climate change, the disappearance of S. polyschides from intertidal pools and a decrease in the density of L ochroleuca can be expected. (C) 2014 Elsevier B.V. All rights reserved.
publishDate 2015
dc.date.none.fl_str_mv 2015-02
2015-02-01T00:00:00Z
2018-12-07T14:52:57Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.1/11281
url http://hdl.handle.net/10400.1/11281
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 0022-0981
10.1016/j.jembe.2014.10.022
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Elsevier Science Bv
publisher.none.fl_str_mv Elsevier Science Bv
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799133262459699200