Sistema inteligente de gestão de energia em edifícios
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10400.22/14603 |
Resumo: | Energy management systems have become one of the most significant concepts in the power energy area, due to the dependency of nowadays human’s lifestyle on electrical appliances and increment of energy demand during the past decades. From a general perspective, the total energy consumption by humans can be divided into three main economic sectors, namely industry, transportation, and buildings. Based on recent studies, the buildings present the largest share of consumption, standing for approximately 40% of the total consumption. This fact makes buildings energy management the most important component of energy management. On another hand, according to the variety of different types of buildings and several existing consumption appliances, the management of energy consumption in the building becomes a challenging problem. The main goal of a building energy management system is to control the energy consumption of the building by considering several facts, such as current and estimated consumption and generation, the energy price and comfort of the users. Due to the complexity of this management and limitations of available information, most of the existing systems focus on optimizing the consumption value and the cost of the energy with less consideration of the comforts and habits of the users. Moreover, the context of decision-making is also not sufficiently explored. However, the energy management in the building can be designed based on an intelligent system which has the knowledge to estimate the comforts and needs of the users and acts based on this awareness. This work studies and develops an intelligent energy management system for buildings energy consumption. This system receives the historical data of the building and uses a set of artificial intelligence techniques as well as several designed rulesets and acts as a recommender system. The goal of the generated recommendations by this system is to attune the usage of the electrical appliances of the building by comforts and habits of the residents while considering the price of the electricity market and the current context. Results show that the system enables users to obtain a comfortable environment in the building in the most affordable way. |
id |
RCAP_90600108c9cd5ca97d49ed86ae302294 |
---|---|
oai_identifier_str |
oai:recipp.ipp.pt:10400.22/14603 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Sistema inteligente de gestão de energia em edifíciosIntelligent energy management system in buildingsBuilding energy management systemsData mining techniquesEnergy consumptionIntelligent systemsRecommender systemsConsumo energéticoSistemas de gestão energética em edifíciosSistemas de recomendaçãoSistemas inteligentesTécnicas de Data MiningSistemas de Informação e ConhecimentoEnergy management systems have become one of the most significant concepts in the power energy area, due to the dependency of nowadays human’s lifestyle on electrical appliances and increment of energy demand during the past decades. From a general perspective, the total energy consumption by humans can be divided into three main economic sectors, namely industry, transportation, and buildings. Based on recent studies, the buildings present the largest share of consumption, standing for approximately 40% of the total consumption. This fact makes buildings energy management the most important component of energy management. On another hand, according to the variety of different types of buildings and several existing consumption appliances, the management of energy consumption in the building becomes a challenging problem. The main goal of a building energy management system is to control the energy consumption of the building by considering several facts, such as current and estimated consumption and generation, the energy price and comfort of the users. Due to the complexity of this management and limitations of available information, most of the existing systems focus on optimizing the consumption value and the cost of the energy with less consideration of the comforts and habits of the users. Moreover, the context of decision-making is also not sufficiently explored. However, the energy management in the building can be designed based on an intelligent system which has the knowledge to estimate the comforts and needs of the users and acts based on this awareness. This work studies and develops an intelligent energy management system for buildings energy consumption. This system receives the historical data of the building and uses a set of artificial intelligence techniques as well as several designed rulesets and acts as a recommender system. The goal of the generated recommendations by this system is to attune the usage of the electrical appliances of the building by comforts and habits of the residents while considering the price of the electricity market and the current context. Results show that the system enables users to obtain a comfortable environment in the building in the most affordable way.Nas últimas décadas, a dependência do estilo de vida na elevada utilização de dispositivos elétricos e grande consumo energético, faz com que os sistemas de gestão de energia sejam um dos conceitos mais relevantes no setor energético. Numa perspetiva geral, o total da energia consumida divide-se essencialmente em três setores económicos: industrial, transporte e edifícios. Os edifícios têm a maior representatividade, correspondendo aproximadamente a 40% do consumo total. Assim, a gestão energética em edifícios é a componente com maior importância nesta área. Por outro lado, devido à variedade dos diferentes tipos de edifícios e dispositivos de consumo, a gestão do consumo de energia nos edifícios apresenta desafios. O objetivo principal de um sistema de gestão energética em edifícios consiste em controlar o consumo energético no edifício, considerando diversos fatores, tais como o consumo e produção atuais, a sua estimativa, o preço de mercado e conforto dos seus utilizadores. Perante a complexidade desta gestão e das limitações da informação disponível, a maioria dos sistemas tem foco na otimização do consumo e os seus custos, tendo em menor consideração o conforto e hábito dos utilizadores. Além disso, o contexto da tomada de decisão não é devidamente explorado, enquanto a gestão energética em edifícios pode ser baseada num sistema inteligente, cujo conhecimento pode estimar o conforto e necessidades dos seus utilizadores, e assim atuar com base nessa consciência. Este trabalho estuda e desenvolve um sistema inteligente para a gestão do consumo de energia em edifícios. O sistema recebe o histórico de dados de um edifício, e utiliza um conjunto de técnicas de inteligência artificial e conjuntos de regras, funcionando como um sistema de recomendações. O objetivo das recomendações geradas pelo sistema é adaptar os dispositivos elétricos do edifício ao conforto e hábitos dos utilizadores enquanto são considerados o preço de mercado e o contexto atual. Os resultados demonstram que o sistema permite aos utilizadores obter um ambiente confortável no edifício, da forma mais económica possível.Marreiros, Maria Goreti CarvalhoRepositório Científico do Instituto Politécnico do PortoJozi, Aria2019-09-13T10:44:13Z20192019-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10400.22/14603TID:202279758enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-03-13T12:58:14Zoai:recipp.ipp.pt:10400.22/14603Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T17:34:26.022334Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Sistema inteligente de gestão de energia em edifícios Intelligent energy management system in buildings |
title |
Sistema inteligente de gestão de energia em edifícios |
spellingShingle |
Sistema inteligente de gestão de energia em edifícios Jozi, Aria Building energy management systems Data mining techniques Energy consumption Intelligent systems Recommender systems Consumo energético Sistemas de gestão energética em edifícios Sistemas de recomendação Sistemas inteligentes Técnicas de Data Mining Sistemas de Informação e Conhecimento |
title_short |
Sistema inteligente de gestão de energia em edifícios |
title_full |
Sistema inteligente de gestão de energia em edifícios |
title_fullStr |
Sistema inteligente de gestão de energia em edifícios |
title_full_unstemmed |
Sistema inteligente de gestão de energia em edifícios |
title_sort |
Sistema inteligente de gestão de energia em edifícios |
author |
Jozi, Aria |
author_facet |
Jozi, Aria |
author_role |
author |
dc.contributor.none.fl_str_mv |
Marreiros, Maria Goreti Carvalho Repositório Científico do Instituto Politécnico do Porto |
dc.contributor.author.fl_str_mv |
Jozi, Aria |
dc.subject.por.fl_str_mv |
Building energy management systems Data mining techniques Energy consumption Intelligent systems Recommender systems Consumo energético Sistemas de gestão energética em edifícios Sistemas de recomendação Sistemas inteligentes Técnicas de Data Mining Sistemas de Informação e Conhecimento |
topic |
Building energy management systems Data mining techniques Energy consumption Intelligent systems Recommender systems Consumo energético Sistemas de gestão energética em edifícios Sistemas de recomendação Sistemas inteligentes Técnicas de Data Mining Sistemas de Informação e Conhecimento |
description |
Energy management systems have become one of the most significant concepts in the power energy area, due to the dependency of nowadays human’s lifestyle on electrical appliances and increment of energy demand during the past decades. From a general perspective, the total energy consumption by humans can be divided into three main economic sectors, namely industry, transportation, and buildings. Based on recent studies, the buildings present the largest share of consumption, standing for approximately 40% of the total consumption. This fact makes buildings energy management the most important component of energy management. On another hand, according to the variety of different types of buildings and several existing consumption appliances, the management of energy consumption in the building becomes a challenging problem. The main goal of a building energy management system is to control the energy consumption of the building by considering several facts, such as current and estimated consumption and generation, the energy price and comfort of the users. Due to the complexity of this management and limitations of available information, most of the existing systems focus on optimizing the consumption value and the cost of the energy with less consideration of the comforts and habits of the users. Moreover, the context of decision-making is also not sufficiently explored. However, the energy management in the building can be designed based on an intelligent system which has the knowledge to estimate the comforts and needs of the users and acts based on this awareness. This work studies and develops an intelligent energy management system for buildings energy consumption. This system receives the historical data of the building and uses a set of artificial intelligence techniques as well as several designed rulesets and acts as a recommender system. The goal of the generated recommendations by this system is to attune the usage of the electrical appliances of the building by comforts and habits of the residents while considering the price of the electricity market and the current context. Results show that the system enables users to obtain a comfortable environment in the building in the most affordable way. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-09-13T10:44:13Z 2019 2019-01-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.22/14603 TID:202279758 |
url |
http://hdl.handle.net/10400.22/14603 |
identifier_str_mv |
TID:202279758 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799131436582699008 |