Automated Journalism as a Source of and a Diagnostic Device for Bias in Reporting
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | https://doi.org/10.17645/mac.v8i3.3022 |
Resumo: | In this article we consider automated journalism from the perspective of bias in news text. We describe how systems for automated journalism could be biased in terms of both the information content and the lexical choices in the text, and what mechanisms allow human biases to affect automated journalism even if the data the system operates on is considered neutral. Hence, we sketch out three distinct scenarios differentiated by the technical transparency of the systems and the level of cooperation of the system operator, affecting the choice of methods for investigating bias. We identify methods for diagnostics in each of the scenarios and note that one of the scenarios is largely identical to investigating bias in non-automatically produced texts. As a solution to this last scenario, we suggest the construction of a simple news generation system, which could enable a type of analysis-by-proxy. Instead of analyzing the system, to which the access is limited, one would generate an approximation of the system which can be accessed and analyzed freely. If successful, this method could also be applied to analysis of human-written texts. This would make automated journalism not only a target of bias diagnostics, but also a diagnostic device for identifying bias in human-written news. |
id |
RCAP_9130dd24288d7546aae03fdacd871772 |
---|---|
oai_identifier_str |
oai:ojs.cogitatiopress.com:article/3022 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Automated Journalism as a Source of and a Diagnostic Device for Bias in Reportingalgorithmic journalism; automated journalism; bias; diagnosis; journalism; news automationIn this article we consider automated journalism from the perspective of bias in news text. We describe how systems for automated journalism could be biased in terms of both the information content and the lexical choices in the text, and what mechanisms allow human biases to affect automated journalism even if the data the system operates on is considered neutral. Hence, we sketch out three distinct scenarios differentiated by the technical transparency of the systems and the level of cooperation of the system operator, affecting the choice of methods for investigating bias. We identify methods for diagnostics in each of the scenarios and note that one of the scenarios is largely identical to investigating bias in non-automatically produced texts. As a solution to this last scenario, we suggest the construction of a simple news generation system, which could enable a type of analysis-by-proxy. Instead of analyzing the system, to which the access is limited, one would generate an approximation of the system which can be accessed and analyzed freely. If successful, this method could also be applied to analysis of human-written texts. This would make automated journalism not only a target of bias diagnostics, but also a diagnostic device for identifying bias in human-written news.Cogitatio2020-07-10info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttps://doi.org/10.17645/mac.v8i3.3022oai:ojs.cogitatiopress.com:article/3022Media and Communication; Vol 8, No 3 (2020): Algorithms and Journalism: Exploring (Re)Configurations; 39-492183-2439reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAPenghttps://www.cogitatiopress.com/mediaandcommunication/article/view/3022https://doi.org/10.17645/mac.v8i3.3022https://www.cogitatiopress.com/mediaandcommunication/article/view/3022/3022Copyright (c) 2020 Leo Leppänen, Hanna Tuulonen, Stefanie Sirén-Heikelhttp://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessLeppänen, LeoTuulonen, HannaSirén-Heikel, Stefanie2022-12-20T10:58:53Zoai:ojs.cogitatiopress.com:article/3022Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T16:21:09.687303Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Automated Journalism as a Source of and a Diagnostic Device for Bias in Reporting |
title |
Automated Journalism as a Source of and a Diagnostic Device for Bias in Reporting |
spellingShingle |
Automated Journalism as a Source of and a Diagnostic Device for Bias in Reporting Leppänen, Leo algorithmic journalism; automated journalism; bias; diagnosis; journalism; news automation |
title_short |
Automated Journalism as a Source of and a Diagnostic Device for Bias in Reporting |
title_full |
Automated Journalism as a Source of and a Diagnostic Device for Bias in Reporting |
title_fullStr |
Automated Journalism as a Source of and a Diagnostic Device for Bias in Reporting |
title_full_unstemmed |
Automated Journalism as a Source of and a Diagnostic Device for Bias in Reporting |
title_sort |
Automated Journalism as a Source of and a Diagnostic Device for Bias in Reporting |
author |
Leppänen, Leo |
author_facet |
Leppänen, Leo Tuulonen, Hanna Sirén-Heikel, Stefanie |
author_role |
author |
author2 |
Tuulonen, Hanna Sirén-Heikel, Stefanie |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Leppänen, Leo Tuulonen, Hanna Sirén-Heikel, Stefanie |
dc.subject.por.fl_str_mv |
algorithmic journalism; automated journalism; bias; diagnosis; journalism; news automation |
topic |
algorithmic journalism; automated journalism; bias; diagnosis; journalism; news automation |
description |
In this article we consider automated journalism from the perspective of bias in news text. We describe how systems for automated journalism could be biased in terms of both the information content and the lexical choices in the text, and what mechanisms allow human biases to affect automated journalism even if the data the system operates on is considered neutral. Hence, we sketch out three distinct scenarios differentiated by the technical transparency of the systems and the level of cooperation of the system operator, affecting the choice of methods for investigating bias. We identify methods for diagnostics in each of the scenarios and note that one of the scenarios is largely identical to investigating bias in non-automatically produced texts. As a solution to this last scenario, we suggest the construction of a simple news generation system, which could enable a type of analysis-by-proxy. Instead of analyzing the system, to which the access is limited, one would generate an approximation of the system which can be accessed and analyzed freely. If successful, this method could also be applied to analysis of human-written texts. This would make automated journalism not only a target of bias diagnostics, but also a diagnostic device for identifying bias in human-written news. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-07-10 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://doi.org/10.17645/mac.v8i3.3022 oai:ojs.cogitatiopress.com:article/3022 |
url |
https://doi.org/10.17645/mac.v8i3.3022 |
identifier_str_mv |
oai:ojs.cogitatiopress.com:article/3022 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
https://www.cogitatiopress.com/mediaandcommunication/article/view/3022 https://doi.org/10.17645/mac.v8i3.3022 https://www.cogitatiopress.com/mediaandcommunication/article/view/3022/3022 |
dc.rights.driver.fl_str_mv |
Copyright (c) 2020 Leo Leppänen, Hanna Tuulonen, Stefanie Sirén-Heikel http://creativecommons.org/licenses/by/4.0 info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Copyright (c) 2020 Leo Leppänen, Hanna Tuulonen, Stefanie Sirén-Heikel http://creativecommons.org/licenses/by/4.0 |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Cogitatio |
publisher.none.fl_str_mv |
Cogitatio |
dc.source.none.fl_str_mv |
Media and Communication; Vol 8, No 3 (2020): Algorithms and Journalism: Exploring (Re)Configurations; 39-49 2183-2439 reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799130658738536448 |