CSP mirror soiling characterization and modeling

Detalhes bibliográficos
Autor(a) principal: Conceição, Ricardo
Data de Publicação: 2018
Outros Autores: Silva, Hugo, Collares-Pereira, Manuel
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10174/24565
https://doi.org/10.1016/j.solmat.2018.05.035
Resumo: Soiling stands as a major problem for solar energy conversion technologies, causing unwanted transmittance, reflectance and absorbance losses. In this paper, a TraCS (Tracking Cleanliness Sensor) is used to quantify soiling effect in a flat mirror and to calculate soiling rates between periods without rain. Environmental parameters such as vertical wind speed, air temperature, relative humidity and particulate matter in the atmosphere are used as predictors to model soiling. Relations and trends between input and output are analyzed using a simple linear regression model and also through an interaction model. Further investigation is performed with a neural network approach to assess its viability for this type of problem and also for comparison with the previous models.
id RCAP_91580ffe12d47e46a97f9320055c78b8
oai_identifier_str oai:dspace.uevora.pt:10174/24565
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling CSP mirror soiling characterization and modelingSolar energyCSPSoilingModelingSoiling stands as a major problem for solar energy conversion technologies, causing unwanted transmittance, reflectance and absorbance losses. In this paper, a TraCS (Tracking Cleanliness Sensor) is used to quantify soiling effect in a flat mirror and to calculate soiling rates between periods without rain. Environmental parameters such as vertical wind speed, air temperature, relative humidity and particulate matter in the atmosphere are used as predictors to model soiling. Relations and trends between input and output are analyzed using a simple linear regression model and also through an interaction model. Further investigation is performed with a neural network approach to assess its viability for this type of problem and also for comparison with the previous models.2019-02-12T12:25:58Z2019-02-122018-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10174/24565http://hdl.handle.net/10174/24565https://doi.org/10.1016/j.solmat.2018.05.035enghttps://www.sciencedirect.com/science/article/pii/S0927024818302629rfc@uevora.pthgsilva@uevora.ptcollarespereira@uevora.ptConceição, RicardoSilva, HugoCollares-Pereira, Manuelinfo:eu-repo/semantics/embargoedAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-01-03T19:17:48Zoai:dspace.uevora.pt:10174/24565Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T01:15:15.879366Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv CSP mirror soiling characterization and modeling
title CSP mirror soiling characterization and modeling
spellingShingle CSP mirror soiling characterization and modeling
Conceição, Ricardo
Solar energy
CSP
Soiling
Modeling
title_short CSP mirror soiling characterization and modeling
title_full CSP mirror soiling characterization and modeling
title_fullStr CSP mirror soiling characterization and modeling
title_full_unstemmed CSP mirror soiling characterization and modeling
title_sort CSP mirror soiling characterization and modeling
author Conceição, Ricardo
author_facet Conceição, Ricardo
Silva, Hugo
Collares-Pereira, Manuel
author_role author
author2 Silva, Hugo
Collares-Pereira, Manuel
author2_role author
author
dc.contributor.author.fl_str_mv Conceição, Ricardo
Silva, Hugo
Collares-Pereira, Manuel
dc.subject.por.fl_str_mv Solar energy
CSP
Soiling
Modeling
topic Solar energy
CSP
Soiling
Modeling
description Soiling stands as a major problem for solar energy conversion technologies, causing unwanted transmittance, reflectance and absorbance losses. In this paper, a TraCS (Tracking Cleanliness Sensor) is used to quantify soiling effect in a flat mirror and to calculate soiling rates between periods without rain. Environmental parameters such as vertical wind speed, air temperature, relative humidity and particulate matter in the atmosphere are used as predictors to model soiling. Relations and trends between input and output are analyzed using a simple linear regression model and also through an interaction model. Further investigation is performed with a neural network approach to assess its viability for this type of problem and also for comparison with the previous models.
publishDate 2018
dc.date.none.fl_str_mv 2018-01-01T00:00:00Z
2019-02-12T12:25:58Z
2019-02-12
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10174/24565
http://hdl.handle.net/10174/24565
https://doi.org/10.1016/j.solmat.2018.05.035
url http://hdl.handle.net/10174/24565
https://doi.org/10.1016/j.solmat.2018.05.035
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv https://www.sciencedirect.com/science/article/pii/S0927024818302629
rfc@uevora.pt
hgsilva@uevora.pt
collarespereira@uevora.pt
dc.rights.driver.fl_str_mv info:eu-repo/semantics/embargoedAccess
eu_rights_str_mv embargoedAccess
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799136634198818816