Spherical continuous wavelet transforms arising from sections of the Lorentz group
Autor(a) principal: | |
---|---|
Data de Publicação: | 2009 |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10400.8/3820 |
Resumo: | We consider the conformal group of the unit sphere Sn−1, the so-called proper Lorentz group Spin+(1,n), for the study of spherical continuous wavelet transforms. Our approach is based on the method for construction of general coherent states associated to square integrable group representations over homogeneous spaces. The underlying homogeneous space is an extension to the whole of the group Spin+(1,n) of the factorization of the gyrogroup of the unit ball by an appropriate gyro-subgroup. Sections on it are constituted by rotations of the subgroup Spin(n) and Möbius transformations of the type ϕa(x) = (x −a)(1 + ax)−1, where a belongs to a given section on a quotient space of the unit ball. This extends in a natural way the work of Antoine and Vandergheynst to anisotropic conformal dilations on the unit sphere. |
id |
RCAP_915b48de5612469431e2b80c5cb9dbfd |
---|---|
oai_identifier_str |
oai:iconline.ipleiria.pt:10400.8/3820 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Spherical continuous wavelet transforms arising from sections of the Lorentz groupSpherical continuous wavelet transformGyrogroupsQuotient spacesHomogeneous spacesSectionsAnisotropic dilationsWe consider the conformal group of the unit sphere Sn−1, the so-called proper Lorentz group Spin+(1,n), for the study of spherical continuous wavelet transforms. Our approach is based on the method for construction of general coherent states associated to square integrable group representations over homogeneous spaces. The underlying homogeneous space is an extension to the whole of the group Spin+(1,n) of the factorization of the gyrogroup of the unit ball by an appropriate gyro-subgroup. Sections on it are constituted by rotations of the subgroup Spin(n) and Möbius transformations of the type ϕa(x) = (x −a)(1 + ax)−1, where a belongs to a given section on a quotient space of the unit ball. This extends in a natural way the work of Antoine and Vandergheynst to anisotropic conformal dilations on the unit sphere.ElsevierIC-OnlineFerreira, Milton2019-02-07T15:49:46Z2009-032009-03-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.8/3820engFerreira M., Spherical Continuous wavelet transforms arising from sections of the Lorentz group, Appl. Comput. Harmon. Anal. 26 (2) (2009), 212-2291063-52031096-603X10.1016/j.acha.2008.04.005info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-01-17T15:47:59Zoai:iconline.ipleiria.pt:10400.8/3820Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T01:47:50.576113Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Spherical continuous wavelet transforms arising from sections of the Lorentz group |
title |
Spherical continuous wavelet transforms arising from sections of the Lorentz group |
spellingShingle |
Spherical continuous wavelet transforms arising from sections of the Lorentz group Ferreira, Milton Spherical continuous wavelet transform Gyrogroups Quotient spaces Homogeneous spaces Sections Anisotropic dilations |
title_short |
Spherical continuous wavelet transforms arising from sections of the Lorentz group |
title_full |
Spherical continuous wavelet transforms arising from sections of the Lorentz group |
title_fullStr |
Spherical continuous wavelet transforms arising from sections of the Lorentz group |
title_full_unstemmed |
Spherical continuous wavelet transforms arising from sections of the Lorentz group |
title_sort |
Spherical continuous wavelet transforms arising from sections of the Lorentz group |
author |
Ferreira, Milton |
author_facet |
Ferreira, Milton |
author_role |
author |
dc.contributor.none.fl_str_mv |
IC-Online |
dc.contributor.author.fl_str_mv |
Ferreira, Milton |
dc.subject.por.fl_str_mv |
Spherical continuous wavelet transform Gyrogroups Quotient spaces Homogeneous spaces Sections Anisotropic dilations |
topic |
Spherical continuous wavelet transform Gyrogroups Quotient spaces Homogeneous spaces Sections Anisotropic dilations |
description |
We consider the conformal group of the unit sphere Sn−1, the so-called proper Lorentz group Spin+(1,n), for the study of spherical continuous wavelet transforms. Our approach is based on the method for construction of general coherent states associated to square integrable group representations over homogeneous spaces. The underlying homogeneous space is an extension to the whole of the group Spin+(1,n) of the factorization of the gyrogroup of the unit ball by an appropriate gyro-subgroup. Sections on it are constituted by rotations of the subgroup Spin(n) and Möbius transformations of the type ϕa(x) = (x −a)(1 + ax)−1, where a belongs to a given section on a quotient space of the unit ball. This extends in a natural way the work of Antoine and Vandergheynst to anisotropic conformal dilations on the unit sphere. |
publishDate |
2009 |
dc.date.none.fl_str_mv |
2009-03 2009-03-01T00:00:00Z 2019-02-07T15:49:46Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.8/3820 |
url |
http://hdl.handle.net/10400.8/3820 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Ferreira M., Spherical Continuous wavelet transforms arising from sections of the Lorentz group, Appl. Comput. Harmon. Anal. 26 (2) (2009), 212-229 1063-5203 1096-603X 10.1016/j.acha.2008.04.005 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799136972148572160 |