Spherical continuous wavelet transforms arising from sections of the Lorentz group

Detalhes bibliográficos
Autor(a) principal: Ferreira, Milton
Data de Publicação: 2009
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10400.8/3820
Resumo: We consider the conformal group of the unit sphere Sn−1, the so-called proper Lorentz group Spin+(1,n), for the study of spherical continuous wavelet transforms. Our approach is based on the method for construction of general coherent states associated to square integrable group representations over homogeneous spaces. The underlying homogeneous space is an extension to the whole of the group Spin+(1,n) of the factorization of the gyrogroup of the unit ball by an appropriate gyro-subgroup. Sections on it are constituted by rotations of the subgroup Spin(n) and Möbius transformations of the type ϕa(x) = (x −a)(1 + ax)−1, where a belongs to a given section on a quotient space of the unit ball. This extends in a natural way the work of Antoine and Vandergheynst to anisotropic conformal dilations on the unit sphere.
id RCAP_915b48de5612469431e2b80c5cb9dbfd
oai_identifier_str oai:iconline.ipleiria.pt:10400.8/3820
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Spherical continuous wavelet transforms arising from sections of the Lorentz groupSpherical continuous wavelet transformGyrogroupsQuotient spacesHomogeneous spacesSectionsAnisotropic dilationsWe consider the conformal group of the unit sphere Sn−1, the so-called proper Lorentz group Spin+(1,n), for the study of spherical continuous wavelet transforms. Our approach is based on the method for construction of general coherent states associated to square integrable group representations over homogeneous spaces. The underlying homogeneous space is an extension to the whole of the group Spin+(1,n) of the factorization of the gyrogroup of the unit ball by an appropriate gyro-subgroup. Sections on it are constituted by rotations of the subgroup Spin(n) and Möbius transformations of the type ϕa(x) = (x −a)(1 + ax)−1, where a belongs to a given section on a quotient space of the unit ball. This extends in a natural way the work of Antoine and Vandergheynst to anisotropic conformal dilations on the unit sphere.ElsevierIC-OnlineFerreira, Milton2019-02-07T15:49:46Z2009-032009-03-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.8/3820engFerreira M., Spherical Continuous wavelet transforms arising from sections of the Lorentz group, Appl. Comput. Harmon. Anal. 26 (2) (2009), 212-2291063-52031096-603X10.1016/j.acha.2008.04.005info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-01-17T15:47:59Zoai:iconline.ipleiria.pt:10400.8/3820Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T01:47:50.576113Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Spherical continuous wavelet transforms arising from sections of the Lorentz group
title Spherical continuous wavelet transforms arising from sections of the Lorentz group
spellingShingle Spherical continuous wavelet transforms arising from sections of the Lorentz group
Ferreira, Milton
Spherical continuous wavelet transform
Gyrogroups
Quotient spaces
Homogeneous spaces
Sections
Anisotropic dilations
title_short Spherical continuous wavelet transforms arising from sections of the Lorentz group
title_full Spherical continuous wavelet transforms arising from sections of the Lorentz group
title_fullStr Spherical continuous wavelet transforms arising from sections of the Lorentz group
title_full_unstemmed Spherical continuous wavelet transforms arising from sections of the Lorentz group
title_sort Spherical continuous wavelet transforms arising from sections of the Lorentz group
author Ferreira, Milton
author_facet Ferreira, Milton
author_role author
dc.contributor.none.fl_str_mv IC-Online
dc.contributor.author.fl_str_mv Ferreira, Milton
dc.subject.por.fl_str_mv Spherical continuous wavelet transform
Gyrogroups
Quotient spaces
Homogeneous spaces
Sections
Anisotropic dilations
topic Spherical continuous wavelet transform
Gyrogroups
Quotient spaces
Homogeneous spaces
Sections
Anisotropic dilations
description We consider the conformal group of the unit sphere Sn−1, the so-called proper Lorentz group Spin+(1,n), for the study of spherical continuous wavelet transforms. Our approach is based on the method for construction of general coherent states associated to square integrable group representations over homogeneous spaces. The underlying homogeneous space is an extension to the whole of the group Spin+(1,n) of the factorization of the gyrogroup of the unit ball by an appropriate gyro-subgroup. Sections on it are constituted by rotations of the subgroup Spin(n) and Möbius transformations of the type ϕa(x) = (x −a)(1 + ax)−1, where a belongs to a given section on a quotient space of the unit ball. This extends in a natural way the work of Antoine and Vandergheynst to anisotropic conformal dilations on the unit sphere.
publishDate 2009
dc.date.none.fl_str_mv 2009-03
2009-03-01T00:00:00Z
2019-02-07T15:49:46Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.8/3820
url http://hdl.handle.net/10400.8/3820
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Ferreira M., Spherical Continuous wavelet transforms arising from sections of the Lorentz group, Appl. Comput. Harmon. Anal. 26 (2) (2009), 212-229
1063-5203
1096-603X
10.1016/j.acha.2008.04.005
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799136972148572160