On a one-equation turbulent model with feedbacks

Detalhes bibliográficos
Autor(a) principal: de Oliveira, H. B.
Data de Publicação: 2016
Outros Autores: Paiva, A.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10400.1/9676
Resumo: A one-equation turbulent model is derived in this work on the basis of the approach used for the k-epsilon model. The novelty of the model consists in the consideration of a general feedback forces field in the momentum equation and a rather general turbulent dissipation function in the equation for the turbulent kinetic energy. For the steady-state associated boundary value problem, we prove the uniqueness of weak solutions under monotonous conditions on the feedbacks and smallness conditions on the solutions to the problem. We also discuss the existence of weak solutions and issues related with the higher integrability of the solutions gradients.
id RCAP_91e9270a556e199fb9f5dbd3e6f98c1b
oai_identifier_str oai:sapientia.ualg.pt:10400.1/9676
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling On a one-equation turbulent model with feedbacksTurbulenceK-epsilon modelFeedback forcesUniquenessA one-equation turbulent model is derived in this work on the basis of the approach used for the k-epsilon model. The novelty of the model consists in the consideration of a general feedback forces field in the momentum equation and a rather general turbulent dissipation function in the equation for the turbulent kinetic energy. For the steady-state associated boundary value problem, we prove the uniqueness of weak solutions under monotonous conditions on the feedbacks and smallness conditions on the solutions to the problem. We also discuss the existence of weak solutions and issues related with the higher integrability of the solutions gradients.Springer, ChamPinelas, S.Došlá, Z.Došlý, O.Kloeden, P. E.Sapientiade Oliveira, H. B.Paiva, A.2017-04-07T15:57:19Z20162016-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.1/9676eng978-3-319-32857-72194-1009AUT: HOL01377;https://doi.org/10.1007/978-3-319-32857-7_5info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-24T10:21:11Zoai:sapientia.ualg.pt:10400.1/9676Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T20:01:33.818446Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv On a one-equation turbulent model with feedbacks
title On a one-equation turbulent model with feedbacks
spellingShingle On a one-equation turbulent model with feedbacks
de Oliveira, H. B.
Turbulence
K-epsilon model
Feedback forces
Uniqueness
title_short On a one-equation turbulent model with feedbacks
title_full On a one-equation turbulent model with feedbacks
title_fullStr On a one-equation turbulent model with feedbacks
title_full_unstemmed On a one-equation turbulent model with feedbacks
title_sort On a one-equation turbulent model with feedbacks
author de Oliveira, H. B.
author_facet de Oliveira, H. B.
Paiva, A.
author_role author
author2 Paiva, A.
author2_role author
dc.contributor.none.fl_str_mv Pinelas, S.
Došlá, Z.
Došlý, O.
Kloeden, P. E.
Sapientia
dc.contributor.author.fl_str_mv de Oliveira, H. B.
Paiva, A.
dc.subject.por.fl_str_mv Turbulence
K-epsilon model
Feedback forces
Uniqueness
topic Turbulence
K-epsilon model
Feedback forces
Uniqueness
description A one-equation turbulent model is derived in this work on the basis of the approach used for the k-epsilon model. The novelty of the model consists in the consideration of a general feedback forces field in the momentum equation and a rather general turbulent dissipation function in the equation for the turbulent kinetic energy. For the steady-state associated boundary value problem, we prove the uniqueness of weak solutions under monotonous conditions on the feedbacks and smallness conditions on the solutions to the problem. We also discuss the existence of weak solutions and issues related with the higher integrability of the solutions gradients.
publishDate 2016
dc.date.none.fl_str_mv 2016
2016-01-01T00:00:00Z
2017-04-07T15:57:19Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.1/9676
url http://hdl.handle.net/10400.1/9676
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 978-3-319-32857-7
2194-1009
AUT: HOL01377;
https://doi.org/10.1007/978-3-319-32857-7_5
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Springer, Cham
publisher.none.fl_str_mv Springer, Cham
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799133246198382592