On a one-equation turbulent model with feedbacks
Autor(a) principal: | |
---|---|
Data de Publicação: | 2016 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10400.1/9676 |
Resumo: | A one-equation turbulent model is derived in this work on the basis of the approach used for the k-epsilon model. The novelty of the model consists in the consideration of a general feedback forces field in the momentum equation and a rather general turbulent dissipation function in the equation for the turbulent kinetic energy. For the steady-state associated boundary value problem, we prove the uniqueness of weak solutions under monotonous conditions on the feedbacks and smallness conditions on the solutions to the problem. We also discuss the existence of weak solutions and issues related with the higher integrability of the solutions gradients. |
id |
RCAP_91e9270a556e199fb9f5dbd3e6f98c1b |
---|---|
oai_identifier_str |
oai:sapientia.ualg.pt:10400.1/9676 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
On a one-equation turbulent model with feedbacksTurbulenceK-epsilon modelFeedback forcesUniquenessA one-equation turbulent model is derived in this work on the basis of the approach used for the k-epsilon model. The novelty of the model consists in the consideration of a general feedback forces field in the momentum equation and a rather general turbulent dissipation function in the equation for the turbulent kinetic energy. For the steady-state associated boundary value problem, we prove the uniqueness of weak solutions under monotonous conditions on the feedbacks and smallness conditions on the solutions to the problem. We also discuss the existence of weak solutions and issues related with the higher integrability of the solutions gradients.Springer, ChamPinelas, S.Došlá, Z.Došlý, O.Kloeden, P. E.Sapientiade Oliveira, H. B.Paiva, A.2017-04-07T15:57:19Z20162016-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.1/9676eng978-3-319-32857-72194-1009AUT: HOL01377;https://doi.org/10.1007/978-3-319-32857-7_5info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-24T10:21:11Zoai:sapientia.ualg.pt:10400.1/9676Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T20:01:33.818446Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
On a one-equation turbulent model with feedbacks |
title |
On a one-equation turbulent model with feedbacks |
spellingShingle |
On a one-equation turbulent model with feedbacks de Oliveira, H. B. Turbulence K-epsilon model Feedback forces Uniqueness |
title_short |
On a one-equation turbulent model with feedbacks |
title_full |
On a one-equation turbulent model with feedbacks |
title_fullStr |
On a one-equation turbulent model with feedbacks |
title_full_unstemmed |
On a one-equation turbulent model with feedbacks |
title_sort |
On a one-equation turbulent model with feedbacks |
author |
de Oliveira, H. B. |
author_facet |
de Oliveira, H. B. Paiva, A. |
author_role |
author |
author2 |
Paiva, A. |
author2_role |
author |
dc.contributor.none.fl_str_mv |
Pinelas, S. Došlá, Z. Došlý, O. Kloeden, P. E. Sapientia |
dc.contributor.author.fl_str_mv |
de Oliveira, H. B. Paiva, A. |
dc.subject.por.fl_str_mv |
Turbulence K-epsilon model Feedback forces Uniqueness |
topic |
Turbulence K-epsilon model Feedback forces Uniqueness |
description |
A one-equation turbulent model is derived in this work on the basis of the approach used for the k-epsilon model. The novelty of the model consists in the consideration of a general feedback forces field in the momentum equation and a rather general turbulent dissipation function in the equation for the turbulent kinetic energy. For the steady-state associated boundary value problem, we prove the uniqueness of weak solutions under monotonous conditions on the feedbacks and smallness conditions on the solutions to the problem. We also discuss the existence of weak solutions and issues related with the higher integrability of the solutions gradients. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016 2016-01-01T00:00:00Z 2017-04-07T15:57:19Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.1/9676 |
url |
http://hdl.handle.net/10400.1/9676 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
978-3-319-32857-7 2194-1009 AUT: HOL01377; https://doi.org/10.1007/978-3-319-32857-7_5 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Springer, Cham |
publisher.none.fl_str_mv |
Springer, Cham |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799133246198382592 |