Estudo sobre a aplicação de redes neuronais à detecção de contornos em imagens

Detalhes bibliográficos
Autor(a) principal: Pinho, Armando José Formoso de
Data de Publicação: 1996
Idioma: por
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10773/33039
Resumo: Nesta tese abordamos a questão da detecção de contornos em imagens. A ideia fundamental que motivou este trabalho relaciona-se com a filosofia de abordagem do problema. A linha de trabalho que seguimos foi no sentido de investigar métodos que permitam a criação de detectores de contornos dedicados a aplicações específicas, e não no sentido de tentar desenvolver operadores de carácter geral. Uma das formas de abordar este problema é considerar que é possível obter um conjunto de dados de treino capaz de representar, razoavelmente, o universo em que o detector vai operar. No nosso caso, isso significa dispor de algumas imagens representativas desse universo, e respectivos mapas de contornos. O problema pode então ser formulado do ponto de vista da criação e adaptação do detector apropriado. É aqui que as redes neuronais artificiais surgem como possíveis candidatas a essa função, dada a sua característica de serem capazes de aprender (adaptar-se) através de exemplos. Por conseguinte, esta tese descreve o estudo de alguns dos problemas relacionados com a utilização de redes neuronais para a implementação de detectores de contornos. Contudo, embora central, esta não é a única questão aqui tratada. Começamos por abordar o problema da detecção de contornos em imagens, tendo como base operações de filtragem e diferenciação. Em seguida, é proposto e discutido um novo método para a avaliação objectiva da qualidade de mapas de contornos. Segue-se uma introdução às redes neuronais, dando-se especial ênfase aos algoritmos e técnicas que usámos ao longo deste trabalho. Passamos então à descrição do método que propomos nesta tese, começando por abordar algumas questões de representação dos dados de entrada e sua organização topológica, assim como algumas das suas propriedades. Em seguida, é dada ao trabalho uma perspectiva de reconhecimento de padrões, onde se relacionam os detectores de contornos neuronais com as técnicas clássicas de classificação. Além disso, é sugerida a utilização de redes neuronais recorrentes para a incorporação de informação contextual e são efectuadas algumas comparações com técnicas de relaxação probabilística. Finalmente, é feita a apresentação e discussão dos resultados experimentais. Como conclusão principal deste trabalho podemos afirmar que as redes neuronais podem ser utilizadas na criação de detectores de contornos especializados, apresentando vantagens em relação aos detectores tradicionais. Estes resultados são bastante encorajadores, revelando as potencialidades deste novo método para a detecção de contornos em imagens.
id RCAP_91efd642b0779294af0f95fe8bd3412e
oai_identifier_str oai:ria.ua.pt:10773/33039
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Estudo sobre a aplicação de redes neuronais à detecção de contornos em imagensDetecção de contornosRedes neuronaisRetropropagaçãoAvaliação da qualidade de contornosAnálise de imagemNesta tese abordamos a questão da detecção de contornos em imagens. A ideia fundamental que motivou este trabalho relaciona-se com a filosofia de abordagem do problema. A linha de trabalho que seguimos foi no sentido de investigar métodos que permitam a criação de detectores de contornos dedicados a aplicações específicas, e não no sentido de tentar desenvolver operadores de carácter geral. Uma das formas de abordar este problema é considerar que é possível obter um conjunto de dados de treino capaz de representar, razoavelmente, o universo em que o detector vai operar. No nosso caso, isso significa dispor de algumas imagens representativas desse universo, e respectivos mapas de contornos. O problema pode então ser formulado do ponto de vista da criação e adaptação do detector apropriado. É aqui que as redes neuronais artificiais surgem como possíveis candidatas a essa função, dada a sua característica de serem capazes de aprender (adaptar-se) através de exemplos. Por conseguinte, esta tese descreve o estudo de alguns dos problemas relacionados com a utilização de redes neuronais para a implementação de detectores de contornos. Contudo, embora central, esta não é a única questão aqui tratada. Começamos por abordar o problema da detecção de contornos em imagens, tendo como base operações de filtragem e diferenciação. Em seguida, é proposto e discutido um novo método para a avaliação objectiva da qualidade de mapas de contornos. Segue-se uma introdução às redes neuronais, dando-se especial ênfase aos algoritmos e técnicas que usámos ao longo deste trabalho. Passamos então à descrição do método que propomos nesta tese, começando por abordar algumas questões de representação dos dados de entrada e sua organização topológica, assim como algumas das suas propriedades. Em seguida, é dada ao trabalho uma perspectiva de reconhecimento de padrões, onde se relacionam os detectores de contornos neuronais com as técnicas clássicas de classificação. Além disso, é sugerida a utilização de redes neuronais recorrentes para a incorporação de informação contextual e são efectuadas algumas comparações com técnicas de relaxação probabilística. Finalmente, é feita a apresentação e discussão dos resultados experimentais. Como conclusão principal deste trabalho podemos afirmar que as redes neuronais podem ser utilizadas na criação de detectores de contornos especializados, apresentando vantagens em relação aos detectores tradicionais. Estes resultados são bastante encorajadores, revelando as potencialidades deste novo método para a detecção de contornos em imagens.In this thesis we address the problem of edge detection. The fundamental idea that motivated the work is related to the philosophy with which the problem is addressed. Our line of work was in the direction of investigating methods that could be able to design specialized edge detectors, instead of general purpose operators. One of the ways to address the problem is to consider that it is possible to obtain a training set which is reasonably able to represent the universe where the operator is intended to work. In our case, this means having some images that are representative of that universe, and their corresponding edge maps. Therefore, the problem can be formulated as the design and adaptation of the appropriate detector. It is under this formulation that neural networks are seen as possible candidates to the task, since they are able to learn (adapt) from examples. This thesis presents, therefore, a study of some of the problems related to the use of neural networks in edge detection. However, although central, this is not the only issue that is addressed. We start by addressing the subject of edge detection in images, based on the filtering and differentiation approach. Next, we propose and discuss a new method for the quantitative evaluation of edge maps. Then, we give an introduction to the neural network paradigm, focusing our attention on the algorithms and techniques used in this work. We proceed with a description of the method that we propose in this thesis, beginning by addressing some issues related with input data representation, topology and properties. Next, we provide a perspective from the point of view of pattern recognition, relating the neural network edge detectors with classical classification techniques. Moreover, we suggest recurrent neural networks as a way to incorporate contextual data, and we make some comparisons with probabilistic relaxation techniques. Finally, we present and discuss experimental results. The main conclusion of this work is that, in fact, neural networks can be used to implement specialized edge detectors, offering some advantages when compared to traditional operators. These results are very encouraging, revealing the potential of this new methodology for edge detection.2022-01-27T10:51:49Z1996-01-01T00:00:00Z1996doctoral thesisinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://hdl.handle.net/10773/33039porPinho, Armando José Formoso deinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-05-06T04:34:54Zoai:ria.ua.pt:10773/33039Portal AgregadorONGhttps://www.rcaap.pt/oai/openairemluisa.alvim@gmail.comopendoar:71602024-05-06T04:34:54Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Estudo sobre a aplicação de redes neuronais à detecção de contornos em imagens
title Estudo sobre a aplicação de redes neuronais à detecção de contornos em imagens
spellingShingle Estudo sobre a aplicação de redes neuronais à detecção de contornos em imagens
Pinho, Armando José Formoso de
Detecção de contornos
Redes neuronais
Retropropagação
Avaliação da qualidade de contornos
Análise de imagem
title_short Estudo sobre a aplicação de redes neuronais à detecção de contornos em imagens
title_full Estudo sobre a aplicação de redes neuronais à detecção de contornos em imagens
title_fullStr Estudo sobre a aplicação de redes neuronais à detecção de contornos em imagens
title_full_unstemmed Estudo sobre a aplicação de redes neuronais à detecção de contornos em imagens
title_sort Estudo sobre a aplicação de redes neuronais à detecção de contornos em imagens
author Pinho, Armando José Formoso de
author_facet Pinho, Armando José Formoso de
author_role author
dc.contributor.author.fl_str_mv Pinho, Armando José Formoso de
dc.subject.por.fl_str_mv Detecção de contornos
Redes neuronais
Retropropagação
Avaliação da qualidade de contornos
Análise de imagem
topic Detecção de contornos
Redes neuronais
Retropropagação
Avaliação da qualidade de contornos
Análise de imagem
description Nesta tese abordamos a questão da detecção de contornos em imagens. A ideia fundamental que motivou este trabalho relaciona-se com a filosofia de abordagem do problema. A linha de trabalho que seguimos foi no sentido de investigar métodos que permitam a criação de detectores de contornos dedicados a aplicações específicas, e não no sentido de tentar desenvolver operadores de carácter geral. Uma das formas de abordar este problema é considerar que é possível obter um conjunto de dados de treino capaz de representar, razoavelmente, o universo em que o detector vai operar. No nosso caso, isso significa dispor de algumas imagens representativas desse universo, e respectivos mapas de contornos. O problema pode então ser formulado do ponto de vista da criação e adaptação do detector apropriado. É aqui que as redes neuronais artificiais surgem como possíveis candidatas a essa função, dada a sua característica de serem capazes de aprender (adaptar-se) através de exemplos. Por conseguinte, esta tese descreve o estudo de alguns dos problemas relacionados com a utilização de redes neuronais para a implementação de detectores de contornos. Contudo, embora central, esta não é a única questão aqui tratada. Começamos por abordar o problema da detecção de contornos em imagens, tendo como base operações de filtragem e diferenciação. Em seguida, é proposto e discutido um novo método para a avaliação objectiva da qualidade de mapas de contornos. Segue-se uma introdução às redes neuronais, dando-se especial ênfase aos algoritmos e técnicas que usámos ao longo deste trabalho. Passamos então à descrição do método que propomos nesta tese, começando por abordar algumas questões de representação dos dados de entrada e sua organização topológica, assim como algumas das suas propriedades. Em seguida, é dada ao trabalho uma perspectiva de reconhecimento de padrões, onde se relacionam os detectores de contornos neuronais com as técnicas clássicas de classificação. Além disso, é sugerida a utilização de redes neuronais recorrentes para a incorporação de informação contextual e são efectuadas algumas comparações com técnicas de relaxação probabilística. Finalmente, é feita a apresentação e discussão dos resultados experimentais. Como conclusão principal deste trabalho podemos afirmar que as redes neuronais podem ser utilizadas na criação de detectores de contornos especializados, apresentando vantagens em relação aos detectores tradicionais. Estes resultados são bastante encorajadores, revelando as potencialidades deste novo método para a detecção de contornos em imagens.
publishDate 1996
dc.date.none.fl_str_mv 1996-01-01T00:00:00Z
1996
2022-01-27T10:51:49Z
dc.type.driver.fl_str_mv doctoral thesis
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/33039
url http://hdl.handle.net/10773/33039
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv mluisa.alvim@gmail.com
_version_ 1817543797242855424