Reconstitution of weather time series with an analog ensemble model

Detalhes bibliográficos
Autor(a) principal: Santos, Maycon Meier dos
Data de Publicação: 2018
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10198/19762
Resumo: The numeric weather prediction (NWP) that is currently used is based on global circulation models (GCM), which may be used for weather forecasting within horizons of 15 days, commonly. Yet, GCM lacks the spatial resolution required for engineering applications such as wind energy. Additionally, weather forecasts and hindcasts are often affected by phase errors. This study presents the use of a post-processing technic applied to the forecasting of weather time series. The technic is based on identifying analog ensembles from another time series of observations and using these to refine the forecast. To evaluate the skill of the method it was applied to ten weather stations. The focus of the study is to create data for reanalysis in places that lack weather measurements. To be able to evaluate the skill of the method, data from one station was used to forecast six variables at another station. This study used five years of training data to predict two years of forecast. As the analysis required a significant computational power, the studies were divided into two major approaches. The first approach had only one variable in the training period. The results were good for the variables that are easier to predict but had poor results in predicting variables with high level of abrupt changes. The second approach used multiple variables for the training period. The results were found to be significantly better. Although quantitatively there is error in the forecast characterized by a mean absolute error of 0.49 m/s for the wind speed, qualitatively the forecast was able to follow the behavior of the observed curve. It was found that the method can be very sensitive to the initial calibration, which may hinder the results.
id RCAP_91ffe383556ed44a37861760cf2dbf3c
oai_identifier_str oai:bibliotecadigital.ipb.pt:10198/19762
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Reconstitution of weather time series with an analog ensemble modelAnalog ensembleWeather forecastTime seriesPost-processing methodDomínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e InformáticaThe numeric weather prediction (NWP) that is currently used is based on global circulation models (GCM), which may be used for weather forecasting within horizons of 15 days, commonly. Yet, GCM lacks the spatial resolution required for engineering applications such as wind energy. Additionally, weather forecasts and hindcasts are often affected by phase errors. This study presents the use of a post-processing technic applied to the forecasting of weather time series. The technic is based on identifying analog ensembles from another time series of observations and using these to refine the forecast. To evaluate the skill of the method it was applied to ten weather stations. The focus of the study is to create data for reanalysis in places that lack weather measurements. To be able to evaluate the skill of the method, data from one station was used to forecast six variables at another station. This study used five years of training data to predict two years of forecast. As the analysis required a significant computational power, the studies were divided into two major approaches. The first approach had only one variable in the training period. The results were good for the variables that are easier to predict but had poor results in predicting variables with high level of abrupt changes. The second approach used multiple variables for the training period. The results were found to be significantly better. Although quantitatively there is error in the forecast characterized by a mean absolute error of 0.49 m/s for the wind speed, qualitatively the forecast was able to follow the behavior of the observed curve. It was found that the method can be very sensitive to the initial calibration, which may hinder the results.Os modelos de previsão meteorológica atualmente utilizados são baseados no modelo de circulação atmosférica global. Embora este modelo seja altamente eficiente para previsões de curto prazo é pouco eficiente para previsões de longo prazo, devido ao acumulo sistemático de erros. O presente trabalho utiliza uma técnica de pós processamento aplicada à previsão de séries temporais. A técnica utilizada baseia-se no uso de conjuntos análogos que refinam os resultados. O método foi avaliado através de sua aplicação a estações meteorológicas. O foco do estudo é a geração de data para reconstrução de series em locais que não possuam estações meteorológicas. O método foi aplicado de forma que a previsão para a estação A fosse gerada através dos dados da estação B. O estudo utilizou cinco anos de dados para treinamento, e a geração de dois anos de previsões. As análises realizadas demandam de um poder computacional relativamente alto e, portanto, o estudo foi divido em duas partes. Na primeira, o período de treinamento foi gerador por uma única variável. Os resultados foram relativamente bons para as variáveis consideradas de fácil previsão, embora não tenham sido satisfatórios para as variáveis que possuam altos índices de mudanças bruscas. Na segunda análise, múltiplas variáveis compuseram o período de treinamento. Os resultados foram significativamente superiores. Embora as previsões não possuam 100% de precisão, a curva gerada foi capaz de manter o padrão da curva observada em todo o período. Observou-se que o método é eficiente embora bastante sensível à calibração inicial de suas variáveis.Balsa, CarlosRodrigues, Carlos VeigaGomes, Francisco Augusto AparecidoBiblioteca Digital do IPBSantos, Maycon Meier dos2019-11-05T10:43:38Z201920182019-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10198/19762TID:202296466enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-21T10:45:09Zoai:bibliotecadigital.ipb.pt:10198/19762Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T23:10:21.907424Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Reconstitution of weather time series with an analog ensemble model
title Reconstitution of weather time series with an analog ensemble model
spellingShingle Reconstitution of weather time series with an analog ensemble model
Santos, Maycon Meier dos
Analog ensemble
Weather forecast
Time series
Post-processing method
Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática
title_short Reconstitution of weather time series with an analog ensemble model
title_full Reconstitution of weather time series with an analog ensemble model
title_fullStr Reconstitution of weather time series with an analog ensemble model
title_full_unstemmed Reconstitution of weather time series with an analog ensemble model
title_sort Reconstitution of weather time series with an analog ensemble model
author Santos, Maycon Meier dos
author_facet Santos, Maycon Meier dos
author_role author
dc.contributor.none.fl_str_mv Balsa, Carlos
Rodrigues, Carlos Veiga
Gomes, Francisco Augusto Aparecido
Biblioteca Digital do IPB
dc.contributor.author.fl_str_mv Santos, Maycon Meier dos
dc.subject.por.fl_str_mv Analog ensemble
Weather forecast
Time series
Post-processing method
Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática
topic Analog ensemble
Weather forecast
Time series
Post-processing method
Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática
description The numeric weather prediction (NWP) that is currently used is based on global circulation models (GCM), which may be used for weather forecasting within horizons of 15 days, commonly. Yet, GCM lacks the spatial resolution required for engineering applications such as wind energy. Additionally, weather forecasts and hindcasts are often affected by phase errors. This study presents the use of a post-processing technic applied to the forecasting of weather time series. The technic is based on identifying analog ensembles from another time series of observations and using these to refine the forecast. To evaluate the skill of the method it was applied to ten weather stations. The focus of the study is to create data for reanalysis in places that lack weather measurements. To be able to evaluate the skill of the method, data from one station was used to forecast six variables at another station. This study used five years of training data to predict two years of forecast. As the analysis required a significant computational power, the studies were divided into two major approaches. The first approach had only one variable in the training period. The results were good for the variables that are easier to predict but had poor results in predicting variables with high level of abrupt changes. The second approach used multiple variables for the training period. The results were found to be significantly better. Although quantitatively there is error in the forecast characterized by a mean absolute error of 0.49 m/s for the wind speed, qualitatively the forecast was able to follow the behavior of the observed curve. It was found that the method can be very sensitive to the initial calibration, which may hinder the results.
publishDate 2018
dc.date.none.fl_str_mv 2018
2019-11-05T10:43:38Z
2019
2019-01-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10198/19762
TID:202296466
url http://hdl.handle.net/10198/19762
identifier_str_mv TID:202296466
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799135369544859648