Reconstitution of weather time series with an analog ensemble model
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10198/19762 |
Resumo: | The numeric weather prediction (NWP) that is currently used is based on global circulation models (GCM), which may be used for weather forecasting within horizons of 15 days, commonly. Yet, GCM lacks the spatial resolution required for engineering applications such as wind energy. Additionally, weather forecasts and hindcasts are often affected by phase errors. This study presents the use of a post-processing technic applied to the forecasting of weather time series. The technic is based on identifying analog ensembles from another time series of observations and using these to refine the forecast. To evaluate the skill of the method it was applied to ten weather stations. The focus of the study is to create data for reanalysis in places that lack weather measurements. To be able to evaluate the skill of the method, data from one station was used to forecast six variables at another station. This study used five years of training data to predict two years of forecast. As the analysis required a significant computational power, the studies were divided into two major approaches. The first approach had only one variable in the training period. The results were good for the variables that are easier to predict but had poor results in predicting variables with high level of abrupt changes. The second approach used multiple variables for the training period. The results were found to be significantly better. Although quantitatively there is error in the forecast characterized by a mean absolute error of 0.49 m/s for the wind speed, qualitatively the forecast was able to follow the behavior of the observed curve. It was found that the method can be very sensitive to the initial calibration, which may hinder the results. |
id |
RCAP_91ffe383556ed44a37861760cf2dbf3c |
---|---|
oai_identifier_str |
oai:bibliotecadigital.ipb.pt:10198/19762 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Reconstitution of weather time series with an analog ensemble modelAnalog ensembleWeather forecastTime seriesPost-processing methodDomínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e InformáticaThe numeric weather prediction (NWP) that is currently used is based on global circulation models (GCM), which may be used for weather forecasting within horizons of 15 days, commonly. Yet, GCM lacks the spatial resolution required for engineering applications such as wind energy. Additionally, weather forecasts and hindcasts are often affected by phase errors. This study presents the use of a post-processing technic applied to the forecasting of weather time series. The technic is based on identifying analog ensembles from another time series of observations and using these to refine the forecast. To evaluate the skill of the method it was applied to ten weather stations. The focus of the study is to create data for reanalysis in places that lack weather measurements. To be able to evaluate the skill of the method, data from one station was used to forecast six variables at another station. This study used five years of training data to predict two years of forecast. As the analysis required a significant computational power, the studies were divided into two major approaches. The first approach had only one variable in the training period. The results were good for the variables that are easier to predict but had poor results in predicting variables with high level of abrupt changes. The second approach used multiple variables for the training period. The results were found to be significantly better. Although quantitatively there is error in the forecast characterized by a mean absolute error of 0.49 m/s for the wind speed, qualitatively the forecast was able to follow the behavior of the observed curve. It was found that the method can be very sensitive to the initial calibration, which may hinder the results.Os modelos de previsão meteorológica atualmente utilizados são baseados no modelo de circulação atmosférica global. Embora este modelo seja altamente eficiente para previsões de curto prazo é pouco eficiente para previsões de longo prazo, devido ao acumulo sistemático de erros. O presente trabalho utiliza uma técnica de pós processamento aplicada à previsão de séries temporais. A técnica utilizada baseia-se no uso de conjuntos análogos que refinam os resultados. O método foi avaliado através de sua aplicação a estações meteorológicas. O foco do estudo é a geração de data para reconstrução de series em locais que não possuam estações meteorológicas. O método foi aplicado de forma que a previsão para a estação A fosse gerada através dos dados da estação B. O estudo utilizou cinco anos de dados para treinamento, e a geração de dois anos de previsões. As análises realizadas demandam de um poder computacional relativamente alto e, portanto, o estudo foi divido em duas partes. Na primeira, o período de treinamento foi gerador por uma única variável. Os resultados foram relativamente bons para as variáveis consideradas de fácil previsão, embora não tenham sido satisfatórios para as variáveis que possuam altos índices de mudanças bruscas. Na segunda análise, múltiplas variáveis compuseram o período de treinamento. Os resultados foram significativamente superiores. Embora as previsões não possuam 100% de precisão, a curva gerada foi capaz de manter o padrão da curva observada em todo o período. Observou-se que o método é eficiente embora bastante sensível à calibração inicial de suas variáveis.Balsa, CarlosRodrigues, Carlos VeigaGomes, Francisco Augusto AparecidoBiblioteca Digital do IPBSantos, Maycon Meier dos2019-11-05T10:43:38Z201920182019-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10198/19762TID:202296466enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-21T10:45:09Zoai:bibliotecadigital.ipb.pt:10198/19762Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T23:10:21.907424Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Reconstitution of weather time series with an analog ensemble model |
title |
Reconstitution of weather time series with an analog ensemble model |
spellingShingle |
Reconstitution of weather time series with an analog ensemble model Santos, Maycon Meier dos Analog ensemble Weather forecast Time series Post-processing method Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática |
title_short |
Reconstitution of weather time series with an analog ensemble model |
title_full |
Reconstitution of weather time series with an analog ensemble model |
title_fullStr |
Reconstitution of weather time series with an analog ensemble model |
title_full_unstemmed |
Reconstitution of weather time series with an analog ensemble model |
title_sort |
Reconstitution of weather time series with an analog ensemble model |
author |
Santos, Maycon Meier dos |
author_facet |
Santos, Maycon Meier dos |
author_role |
author |
dc.contributor.none.fl_str_mv |
Balsa, Carlos Rodrigues, Carlos Veiga Gomes, Francisco Augusto Aparecido Biblioteca Digital do IPB |
dc.contributor.author.fl_str_mv |
Santos, Maycon Meier dos |
dc.subject.por.fl_str_mv |
Analog ensemble Weather forecast Time series Post-processing method Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática |
topic |
Analog ensemble Weather forecast Time series Post-processing method Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática |
description |
The numeric weather prediction (NWP) that is currently used is based on global circulation models (GCM), which may be used for weather forecasting within horizons of 15 days, commonly. Yet, GCM lacks the spatial resolution required for engineering applications such as wind energy. Additionally, weather forecasts and hindcasts are often affected by phase errors. This study presents the use of a post-processing technic applied to the forecasting of weather time series. The technic is based on identifying analog ensembles from another time series of observations and using these to refine the forecast. To evaluate the skill of the method it was applied to ten weather stations. The focus of the study is to create data for reanalysis in places that lack weather measurements. To be able to evaluate the skill of the method, data from one station was used to forecast six variables at another station. This study used five years of training data to predict two years of forecast. As the analysis required a significant computational power, the studies were divided into two major approaches. The first approach had only one variable in the training period. The results were good for the variables that are easier to predict but had poor results in predicting variables with high level of abrupt changes. The second approach used multiple variables for the training period. The results were found to be significantly better. Although quantitatively there is error in the forecast characterized by a mean absolute error of 0.49 m/s for the wind speed, qualitatively the forecast was able to follow the behavior of the observed curve. It was found that the method can be very sensitive to the initial calibration, which may hinder the results. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018 2019-11-05T10:43:38Z 2019 2019-01-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10198/19762 TID:202296466 |
url |
http://hdl.handle.net/10198/19762 |
identifier_str_mv |
TID:202296466 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799135369544859648 |