A numerical approach to study the Kramers equation for finite geometries: boundary conditions and potential fields

Detalhes bibliográficos
Autor(a) principal: Araújo, Adérito
Data de Publicação: 2015
Outros Autores: Das, Amal K., Sousa, Ercília
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10316/44993
https://doi.org/10.1088/1751-8113/48/4/045202
Resumo: The Kramers equation for the phase-space function, which models the dynamics of an underdamped Brownian particle, is the subject of our study. Numerical solutions of this equation for natural boundaries (unconfined geometries) have been well reported in the literature. But not much has been done on the Kramers equation for finite (confining) geometries which require a set of additional constraints imposed on the phase-space function at physical boundaries. In this paper we present numerical solutions for the Kramers equation with a variety of potential fields—namely constant, linear, harmonic and periodic—in the presence of fully absorbing and fully reflecting boundary conditions (BCs). The choice of the numerical method and its implementation take into consideration the type of BCs, in order to avoid the use of ghost points or artificial conditions. We study and assess the conditions under which the numerical method converges. Various aspects of the solutions for the phase-space function are presented with figures and discussed in detail.
id RCAP_92695820438229eb34cc0fd1238246a1
oai_identifier_str oai:estudogeral.uc.pt:10316/44993
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling A numerical approach to study the Kramers equation for finite geometries: boundary conditions and potential fieldsThe Kramers equation for the phase-space function, which models the dynamics of an underdamped Brownian particle, is the subject of our study. Numerical solutions of this equation for natural boundaries (unconfined geometries) have been well reported in the literature. But not much has been done on the Kramers equation for finite (confining) geometries which require a set of additional constraints imposed on the phase-space function at physical boundaries. In this paper we present numerical solutions for the Kramers equation with a variety of potential fields—namely constant, linear, harmonic and periodic—in the presence of fully absorbing and fully reflecting boundary conditions (BCs). The choice of the numerical method and its implementation take into consideration the type of BCs, in order to avoid the use of ghost points or artificial conditions. We study and assess the conditions under which the numerical method converges. Various aspects of the solutions for the phase-space function are presented with figures and discussed in detail.IOP Publishing2015info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10316/44993http://hdl.handle.net/10316/44993https://doi.org/10.1088/1751-8113/48/4/045202https://doi.org/10.1088/1751-8113/48/4/045202enghttp://iopscience.iop.org/article/10.1088/1751-8113/48/4/045202/metaAraújo, AdéritoDas, Amal K.Sousa, Ercíliainfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2021-08-23T09:14:22Zoai:estudogeral.uc.pt:10316/44993Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T20:53:26.967260Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv A numerical approach to study the Kramers equation for finite geometries: boundary conditions and potential fields
title A numerical approach to study the Kramers equation for finite geometries: boundary conditions and potential fields
spellingShingle A numerical approach to study the Kramers equation for finite geometries: boundary conditions and potential fields
Araújo, Adérito
title_short A numerical approach to study the Kramers equation for finite geometries: boundary conditions and potential fields
title_full A numerical approach to study the Kramers equation for finite geometries: boundary conditions and potential fields
title_fullStr A numerical approach to study the Kramers equation for finite geometries: boundary conditions and potential fields
title_full_unstemmed A numerical approach to study the Kramers equation for finite geometries: boundary conditions and potential fields
title_sort A numerical approach to study the Kramers equation for finite geometries: boundary conditions and potential fields
author Araújo, Adérito
author_facet Araújo, Adérito
Das, Amal K.
Sousa, Ercília
author_role author
author2 Das, Amal K.
Sousa, Ercília
author2_role author
author
dc.contributor.author.fl_str_mv Araújo, Adérito
Das, Amal K.
Sousa, Ercília
description The Kramers equation for the phase-space function, which models the dynamics of an underdamped Brownian particle, is the subject of our study. Numerical solutions of this equation for natural boundaries (unconfined geometries) have been well reported in the literature. But not much has been done on the Kramers equation for finite (confining) geometries which require a set of additional constraints imposed on the phase-space function at physical boundaries. In this paper we present numerical solutions for the Kramers equation with a variety of potential fields—namely constant, linear, harmonic and periodic—in the presence of fully absorbing and fully reflecting boundary conditions (BCs). The choice of the numerical method and its implementation take into consideration the type of BCs, in order to avoid the use of ghost points or artificial conditions. We study and assess the conditions under which the numerical method converges. Various aspects of the solutions for the phase-space function are presented with figures and discussed in detail.
publishDate 2015
dc.date.none.fl_str_mv 2015
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10316/44993
http://hdl.handle.net/10316/44993
https://doi.org/10.1088/1751-8113/48/4/045202
https://doi.org/10.1088/1751-8113/48/4/045202
url http://hdl.handle.net/10316/44993
https://doi.org/10.1088/1751-8113/48/4/045202
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv http://iopscience.iop.org/article/10.1088/1751-8113/48/4/045202/meta
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv IOP Publishing
publisher.none.fl_str_mv IOP Publishing
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799133821190275072