Review and classification of human gait training and rehabilitation devices

Detalhes bibliográficos
Autor(a) principal: Martins, Maria M.
Data de Publicação: 2011
Outros Autores: Frizera Neto, Anselmo, Santos, Cristina, Ceres, R.
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/1822/15338
Resumo: The number of people with reduced mobility capabilities increases every year. This reduction arises mainly due to spinal cord injuries; strokes which caused hemiparesis; or due to an advanced age. This decrease in mobility is a factor that influences both their quality of life and their dependence of others in daily life. Thus, it becomes necessary to find means and tools to prevent, compensate, improve or help to restore and increase the mobility of the affected people. The main expectation is that such means help to recover or ameliorate their independence in their daily life. Traditional training employs a treadmill with a support-weight system. This training is based on the principle of repetition of all the physical movements of a gait and has shown to produce good results in terms of rehabilitation of patients. However, this therapy requires two or more therapists in assisting patients during walking, to hold and adjust the patient’s lower limbs to correctly produce the desired gait. Thus, it requires a substantial commitment and effort of the therapists [1], and it is very expensive in terms of human resources. This leads to a boost on the population healthcare and assistive services demand and, thus an increase in the need for care givers. Assistive mobility robotic devices for gait training of disabled patients in treadmills and in the ground are one successful alternative. Other alternatives include devices that allow a broader training of patients, in different ground types, and the repetition of gait movements in uphill, downhill and trip. This paper reviews state of the art training gait devices focusing on passive and active devices. Passive devices rely on the principle of Gravity-Balancing in that they try to reduce or eliminate the effects of gravity during walking. Active devices are usually classified according to three different approaches: (i) treadmillexoskeleton based devices, (ii) robotic manipulators generating different types of gait patterns, and (iii) mobilite devices. In this review, several examples of current devices are presented.
id RCAP_9380bca5a3e3bb8d1422644abc33e1ce
oai_identifier_str oai:repositorium.sdum.uminho.pt:1822/15338
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Review and classification of human gait training and rehabilitation devicesLocomotionGait rehabilitationOrthosisRoboticsScience & TechnologyThe number of people with reduced mobility capabilities increases every year. This reduction arises mainly due to spinal cord injuries; strokes which caused hemiparesis; or due to an advanced age. This decrease in mobility is a factor that influences both their quality of life and their dependence of others in daily life. Thus, it becomes necessary to find means and tools to prevent, compensate, improve or help to restore and increase the mobility of the affected people. The main expectation is that such means help to recover or ameliorate their independence in their daily life. Traditional training employs a treadmill with a support-weight system. This training is based on the principle of repetition of all the physical movements of a gait and has shown to produce good results in terms of rehabilitation of patients. However, this therapy requires two or more therapists in assisting patients during walking, to hold and adjust the patient’s lower limbs to correctly produce the desired gait. Thus, it requires a substantial commitment and effort of the therapists [1], and it is very expensive in terms of human resources. This leads to a boost on the population healthcare and assistive services demand and, thus an increase in the need for care givers. Assistive mobility robotic devices for gait training of disabled patients in treadmills and in the ground are one successful alternative. Other alternatives include devices that allow a broader training of patients, in different ground types, and the repetition of gait movements in uphill, downhill and trip. This paper reviews state of the art training gait devices focusing on passive and active devices. Passive devices rely on the principle of Gravity-Balancing in that they try to reduce or eliminate the effects of gravity during walking. Active devices are usually classified according to three different approaches: (i) treadmillexoskeleton based devices, (ii) robotic manipulators generating different types of gait patterns, and (iii) mobilite devices. In this review, several examples of current devices are presented.IOS PressUniversidade do MinhoMartins, Maria M.Frizera Neto, AnselmoSantos, CristinaCeres, R.20112011-01-01T00:00:00Zconference paperinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://hdl.handle.net/1822/15338eng97816075081371383-813X10.3233/978-1-60750-814-4-774info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-05-11T07:31:25Zoai:repositorium.sdum.uminho.pt:1822/15338Portal AgregadorONGhttps://www.rcaap.pt/oai/openairemluisa.alvim@gmail.comopendoar:71602024-05-11T07:31:25Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Review and classification of human gait training and rehabilitation devices
title Review and classification of human gait training and rehabilitation devices
spellingShingle Review and classification of human gait training and rehabilitation devices
Martins, Maria M.
Locomotion
Gait rehabilitation
Orthosis
Robotics
Science & Technology
title_short Review and classification of human gait training and rehabilitation devices
title_full Review and classification of human gait training and rehabilitation devices
title_fullStr Review and classification of human gait training and rehabilitation devices
title_full_unstemmed Review and classification of human gait training and rehabilitation devices
title_sort Review and classification of human gait training and rehabilitation devices
author Martins, Maria M.
author_facet Martins, Maria M.
Frizera Neto, Anselmo
Santos, Cristina
Ceres, R.
author_role author
author2 Frizera Neto, Anselmo
Santos, Cristina
Ceres, R.
author2_role author
author
author
dc.contributor.none.fl_str_mv Universidade do Minho
dc.contributor.author.fl_str_mv Martins, Maria M.
Frizera Neto, Anselmo
Santos, Cristina
Ceres, R.
dc.subject.por.fl_str_mv Locomotion
Gait rehabilitation
Orthosis
Robotics
Science & Technology
topic Locomotion
Gait rehabilitation
Orthosis
Robotics
Science & Technology
description The number of people with reduced mobility capabilities increases every year. This reduction arises mainly due to spinal cord injuries; strokes which caused hemiparesis; or due to an advanced age. This decrease in mobility is a factor that influences both their quality of life and their dependence of others in daily life. Thus, it becomes necessary to find means and tools to prevent, compensate, improve or help to restore and increase the mobility of the affected people. The main expectation is that such means help to recover or ameliorate their independence in their daily life. Traditional training employs a treadmill with a support-weight system. This training is based on the principle of repetition of all the physical movements of a gait and has shown to produce good results in terms of rehabilitation of patients. However, this therapy requires two or more therapists in assisting patients during walking, to hold and adjust the patient’s lower limbs to correctly produce the desired gait. Thus, it requires a substantial commitment and effort of the therapists [1], and it is very expensive in terms of human resources. This leads to a boost on the population healthcare and assistive services demand and, thus an increase in the need for care givers. Assistive mobility robotic devices for gait training of disabled patients in treadmills and in the ground are one successful alternative. Other alternatives include devices that allow a broader training of patients, in different ground types, and the repetition of gait movements in uphill, downhill and trip. This paper reviews state of the art training gait devices focusing on passive and active devices. Passive devices rely on the principle of Gravity-Balancing in that they try to reduce or eliminate the effects of gravity during walking. Active devices are usually classified according to three different approaches: (i) treadmillexoskeleton based devices, (ii) robotic manipulators generating different types of gait patterns, and (iii) mobilite devices. In this review, several examples of current devices are presented.
publishDate 2011
dc.date.none.fl_str_mv 2011
2011-01-01T00:00:00Z
dc.type.driver.fl_str_mv conference paper
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/1822/15338
url http://hdl.handle.net/1822/15338
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 9781607508137
1383-813X
10.3233/978-1-60750-814-4-774
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv IOS Press
publisher.none.fl_str_mv IOS Press
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv mluisa.alvim@gmail.com
_version_ 1817545346455175168