How to measure banking regulation and supervision
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10071/29388 |
Resumo: | This paper uses data from 141 countries to identify the variables that best characterize worldwide banking regulation and supervision practices. We apply a nonlinear principal components analysis with optimal variable transformation to deal with the variables’ mixed measurement levels and reduce data dimensionality. The robustness of the results is tested for different subsamples. The findings indicate that deposit insurance, liquidity, diversification requirements, complementary banking activities, and market discipline are the most reliable indicators to measure regulation. In contrast, resolution activities, the mandate of the head of the supervisory agency, and the report of prudential regulation infractions assume the same role for banking supervision. Capital requirements and ownership are of minor relevance and are sensitive to a country’s development level. China and Germany display the most distinct regulation practices, while China and the UK adopt the most stringent policies regarding supervision. |
id |
RCAP_9423598e558b58364b518dd505e718e0 |
---|---|
oai_identifier_str |
oai:repositorio.iscte-iul.pt:10071/29388 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
How to measure banking regulation and supervisionBanking regulationBanking supervisionNonlinear principal components analysisThis paper uses data from 141 countries to identify the variables that best characterize worldwide banking regulation and supervision practices. We apply a nonlinear principal components analysis with optimal variable transformation to deal with the variables’ mixed measurement levels and reduce data dimensionality. The robustness of the results is tested for different subsamples. The findings indicate that deposit insurance, liquidity, diversification requirements, complementary banking activities, and market discipline are the most reliable indicators to measure regulation. In contrast, resolution activities, the mandate of the head of the supervisory agency, and the report of prudential regulation infractions assume the same role for banking supervision. Capital requirements and ownership are of minor relevance and are sensitive to a country’s development level. China and Germany display the most distinct regulation practices, while China and the UK adopt the most stringent policies regarding supervision.Elsevier Science2023-10-09T11:31:18Z2023-01-01T00:00:00Z20232023-10-09T12:29:29Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10071/29388eng0275-531910.1016/j.ribaf.2023.102059Pereira, C.Ramalho, J. J. S.Silva, J. V.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-09T17:52:11Zoai:repositorio.iscte-iul.pt:10071/29388Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T22:25:58.495314Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
How to measure banking regulation and supervision |
title |
How to measure banking regulation and supervision |
spellingShingle |
How to measure banking regulation and supervision Pereira, C. Banking regulation Banking supervision Nonlinear principal components analysis |
title_short |
How to measure banking regulation and supervision |
title_full |
How to measure banking regulation and supervision |
title_fullStr |
How to measure banking regulation and supervision |
title_full_unstemmed |
How to measure banking regulation and supervision |
title_sort |
How to measure banking regulation and supervision |
author |
Pereira, C. |
author_facet |
Pereira, C. Ramalho, J. J. S. Silva, J. V. |
author_role |
author |
author2 |
Ramalho, J. J. S. Silva, J. V. |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Pereira, C. Ramalho, J. J. S. Silva, J. V. |
dc.subject.por.fl_str_mv |
Banking regulation Banking supervision Nonlinear principal components analysis |
topic |
Banking regulation Banking supervision Nonlinear principal components analysis |
description |
This paper uses data from 141 countries to identify the variables that best characterize worldwide banking regulation and supervision practices. We apply a nonlinear principal components analysis with optimal variable transformation to deal with the variables’ mixed measurement levels and reduce data dimensionality. The robustness of the results is tested for different subsamples. The findings indicate that deposit insurance, liquidity, diversification requirements, complementary banking activities, and market discipline are the most reliable indicators to measure regulation. In contrast, resolution activities, the mandate of the head of the supervisory agency, and the report of prudential regulation infractions assume the same role for banking supervision. Capital requirements and ownership are of minor relevance and are sensitive to a country’s development level. China and Germany display the most distinct regulation practices, while China and the UK adopt the most stringent policies regarding supervision. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-10-09T11:31:18Z 2023-01-01T00:00:00Z 2023 2023-10-09T12:29:29Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10071/29388 |
url |
http://hdl.handle.net/10071/29388 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
0275-5319 10.1016/j.ribaf.2023.102059 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science |
publisher.none.fl_str_mv |
Elsevier Science |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799134822674726912 |