Direct integration methods versus modal superposition method, on predicting staircases vibrations
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10400.13/4149 |
Resumo: | The majority of Finite Element software’s present two different solutions methods to perform time history analysis of the equations of motion due to dynamic (time-varying) loads: Direct Integration and Modal Superposition. This paper aims to assess which method should be employed in the design of modern flexible staircases, to more efficiently predict human induced vibrations. This was verified by estimating vibrations on a real staircase using the two time domain analysis methods and, then, comparing with vibrations experimentally measured. The results indicate that Direct Integration could yield to overestimated responses due to the limited capacity, as the vibration modes increase, of FE numerical models to realistic predict natural frequencies and modal shapes of a real structure. Therefore, Modal Superposition is suggested to be used for design routines, excluding, for the same reason, the vibration modes with higher frequency content. © 2020 The Authors. Published by ELSEVIER B.V. This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0) Peer-review under responsibility of the European Structural Integrity Society (ESIS) ExCo Keywords: Modal Superposition; Direct Integration; Duhamel Integral; Human Walking Vibrations; Flexible Staircases. * Corresponding author. Tel.: +351 291 705 197. E-mail address: jmmns@fe.up.pt Available online at www.sciencedirect.com ScienceDirect Structural Integrity Procedia 00 (2019) 000–000 www.elsevier.com/locate/procedia 2452-3216 © 2020 The Authors. Published by ELSEVIER B.V. This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0) Peer-review under responsibility of the European Structural Integrity Society (ESIS) ExCo 1st Virtual European Conference on Fracture Direct Integration Methods versus Modal Superposition Method, on Predicting Staircases Vibrations Pedro Andradea , José Santosb,c,*, Patrícia Escórciob a University of Madeira, 9020-105 Funchal, Portugal b University of Madeira, Faculty of Exact Sciences and Engineering, Department of Civil Engineering and Geology, 9020-105 Funchal, Portugal c CONSTRUCT-LABEST, Faculty of Engineering (FEUP), University of Porto, Portugal Abstract The majority of Finite Element software’s present two different solutions methods to perform time history analysis of the equations of motion due to dynamic (time-varying) loads: Direct Integration and Modal Superposition. This paper aims to assess which method should be employed in the design of modern flexible staircases, to more efficiently predict human induced vibrations. This was verified by estimating vibrations on a real staircase using the two time domain analysis methods and, then, comparing with vibrations experimentally measured. The results indicate that Direct Integration could yield to overestimated responses due to the limited capacity, as the vibration modes increase, of FE numerical models to realistic predict natural frequencies and modal shapes of a real structure. Therefore, Modal Superposition is suggested to be used for design routines, excluding, for the same reason, the vibration modes with higher frequency content. |
id |
RCAP_9450fb6a6eb23b987cf3bc971ebd396f |
---|---|
oai_identifier_str |
oai:digituma.uma.pt:10400.13/4149 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Direct integration methods versus modal superposition method, on predicting staircases vibrationsDirect integration methodsModal superposition methodPredicting staircases vibrations.Faculdade de Ciências Exatas e da EngenhariaThe majority of Finite Element software’s present two different solutions methods to perform time history analysis of the equations of motion due to dynamic (time-varying) loads: Direct Integration and Modal Superposition. This paper aims to assess which method should be employed in the design of modern flexible staircases, to more efficiently predict human induced vibrations. This was verified by estimating vibrations on a real staircase using the two time domain analysis methods and, then, comparing with vibrations experimentally measured. The results indicate that Direct Integration could yield to overestimated responses due to the limited capacity, as the vibration modes increase, of FE numerical models to realistic predict natural frequencies and modal shapes of a real structure. Therefore, Modal Superposition is suggested to be used for design routines, excluding, for the same reason, the vibration modes with higher frequency content. © 2020 The Authors. Published by ELSEVIER B.V. This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0) Peer-review under responsibility of the European Structural Integrity Society (ESIS) ExCo Keywords: Modal Superposition; Direct Integration; Duhamel Integral; Human Walking Vibrations; Flexible Staircases. * Corresponding author. Tel.: +351 291 705 197. E-mail address: jmmns@fe.up.pt Available online at www.sciencedirect.com ScienceDirect Structural Integrity Procedia 00 (2019) 000–000 www.elsevier.com/locate/procedia 2452-3216 © 2020 The Authors. Published by ELSEVIER B.V. This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0) Peer-review under responsibility of the European Structural Integrity Society (ESIS) ExCo 1st Virtual European Conference on Fracture Direct Integration Methods versus Modal Superposition Method, on Predicting Staircases Vibrations Pedro Andradea , José Santosb,c,*, Patrícia Escórciob a University of Madeira, 9020-105 Funchal, Portugal b University of Madeira, Faculty of Exact Sciences and Engineering, Department of Civil Engineering and Geology, 9020-105 Funchal, Portugal c CONSTRUCT-LABEST, Faculty of Engineering (FEUP), University of Porto, Portugal Abstract The majority of Finite Element software’s present two different solutions methods to perform time history analysis of the equations of motion due to dynamic (time-varying) loads: Direct Integration and Modal Superposition. This paper aims to assess which method should be employed in the design of modern flexible staircases, to more efficiently predict human induced vibrations. This was verified by estimating vibrations on a real staircase using the two time domain analysis methods and, then, comparing with vibrations experimentally measured. The results indicate that Direct Integration could yield to overestimated responses due to the limited capacity, as the vibration modes increase, of FE numerical models to realistic predict natural frequencies and modal shapes of a real structure. Therefore, Modal Superposition is suggested to be used for design routines, excluding, for the same reason, the vibration modes with higher frequency content.ElsevierDigitUMaAndrade, PedroSantos, JoséEscórcio, Patrícia2022-03-16T14:39:46Z2020-01-01T00:00:00Z2020-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.13/4149engAndrade, P., Santos, J., & Escórcio, P. (2020). Direct integration methods versus modal superposition method, on predicting staircases vibrations. Procedia Structural Integrity, 28, 279-286. https://doi.org/10.1016/j.prostr.2020.10.03310.1016/j.prostr.2020.10.033info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2022-09-05T12:57:21Zoai:digituma.uma.pt:10400.13/4149Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T15:07:58.779294Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Direct integration methods versus modal superposition method, on predicting staircases vibrations |
title |
Direct integration methods versus modal superposition method, on predicting staircases vibrations |
spellingShingle |
Direct integration methods versus modal superposition method, on predicting staircases vibrations Andrade, Pedro Direct integration methods Modal superposition method Predicting staircases vibrations . Faculdade de Ciências Exatas e da Engenharia |
title_short |
Direct integration methods versus modal superposition method, on predicting staircases vibrations |
title_full |
Direct integration methods versus modal superposition method, on predicting staircases vibrations |
title_fullStr |
Direct integration methods versus modal superposition method, on predicting staircases vibrations |
title_full_unstemmed |
Direct integration methods versus modal superposition method, on predicting staircases vibrations |
title_sort |
Direct integration methods versus modal superposition method, on predicting staircases vibrations |
author |
Andrade, Pedro |
author_facet |
Andrade, Pedro Santos, José Escórcio, Patrícia |
author_role |
author |
author2 |
Santos, José Escórcio, Patrícia |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
DigitUMa |
dc.contributor.author.fl_str_mv |
Andrade, Pedro Santos, José Escórcio, Patrícia |
dc.subject.por.fl_str_mv |
Direct integration methods Modal superposition method Predicting staircases vibrations . Faculdade de Ciências Exatas e da Engenharia |
topic |
Direct integration methods Modal superposition method Predicting staircases vibrations . Faculdade de Ciências Exatas e da Engenharia |
description |
The majority of Finite Element software’s present two different solutions methods to perform time history analysis of the equations of motion due to dynamic (time-varying) loads: Direct Integration and Modal Superposition. This paper aims to assess which method should be employed in the design of modern flexible staircases, to more efficiently predict human induced vibrations. This was verified by estimating vibrations on a real staircase using the two time domain analysis methods and, then, comparing with vibrations experimentally measured. The results indicate that Direct Integration could yield to overestimated responses due to the limited capacity, as the vibration modes increase, of FE numerical models to realistic predict natural frequencies and modal shapes of a real structure. Therefore, Modal Superposition is suggested to be used for design routines, excluding, for the same reason, the vibration modes with higher frequency content. © 2020 The Authors. Published by ELSEVIER B.V. This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0) Peer-review under responsibility of the European Structural Integrity Society (ESIS) ExCo Keywords: Modal Superposition; Direct Integration; Duhamel Integral; Human Walking Vibrations; Flexible Staircases. * Corresponding author. Tel.: +351 291 705 197. E-mail address: jmmns@fe.up.pt Available online at www.sciencedirect.com ScienceDirect Structural Integrity Procedia 00 (2019) 000–000 www.elsevier.com/locate/procedia 2452-3216 © 2020 The Authors. Published by ELSEVIER B.V. This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0) Peer-review under responsibility of the European Structural Integrity Society (ESIS) ExCo 1st Virtual European Conference on Fracture Direct Integration Methods versus Modal Superposition Method, on Predicting Staircases Vibrations Pedro Andradea , José Santosb,c,*, Patrícia Escórciob a University of Madeira, 9020-105 Funchal, Portugal b University of Madeira, Faculty of Exact Sciences and Engineering, Department of Civil Engineering and Geology, 9020-105 Funchal, Portugal c CONSTRUCT-LABEST, Faculty of Engineering (FEUP), University of Porto, Portugal Abstract The majority of Finite Element software’s present two different solutions methods to perform time history analysis of the equations of motion due to dynamic (time-varying) loads: Direct Integration and Modal Superposition. This paper aims to assess which method should be employed in the design of modern flexible staircases, to more efficiently predict human induced vibrations. This was verified by estimating vibrations on a real staircase using the two time domain analysis methods and, then, comparing with vibrations experimentally measured. The results indicate that Direct Integration could yield to overestimated responses due to the limited capacity, as the vibration modes increase, of FE numerical models to realistic predict natural frequencies and modal shapes of a real structure. Therefore, Modal Superposition is suggested to be used for design routines, excluding, for the same reason, the vibration modes with higher frequency content. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-01-01T00:00:00Z 2020-01-01T00:00:00Z 2022-03-16T14:39:46Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.13/4149 |
url |
http://hdl.handle.net/10400.13/4149 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Andrade, P., Santos, J., & Escórcio, P. (2020). Direct integration methods versus modal superposition method, on predicting staircases vibrations. Procedia Structural Integrity, 28, 279-286. https://doi.org/10.1016/j.prostr.2020.10.033 10.1016/j.prostr.2020.10.033 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799129947649867776 |