Multiobjective evolutionary algorithm based on vector angle neighborhood
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/1822/53020 |
Resumo: | Selection is a major driving force behind evolution and is a key feature of multiobjective evolutionary algorithms. Selection aims at promoting the survival and reproduction of individuals that are most fitted to a given environment. In the presence of multiple objectives, major challenges faced by this operator come from the need to address both the population convergence and diversity, which are conflicting to a certain extent. This paper proposes a new selection scheme for evolutionary multiobjective optimization. Its distinctive feature is a similarity measure for estimating the population diversity, which is based on the angle between the objective vectors. The smaller the angle, the more similar individuals. The concept of similarity is exploited during the mating by defining the neighborhood and the replacement by determining the most crowded region where the worst individual is identified. The latter is performed on the basis of a convergence measure that plays a major role in guiding the population towards the Pareto optimal front. The proposed algorithm is intended to exploit strengths of decomposition-based approaches in promoting diversity among the population while reducing the user's burden of specifying weight vectors before the search. The proposed approach is validated by computational experiments with state-of-the-art algorithms on problems with different characteristics. The obtained results indicate a highly competitive performance of the proposed approach. Significant advantages are revealed when dealing with problems posing substantial difficulties in keeping diversity, including many-objective problems. The relevance of the suggested similarity and convergence measures are shown. The validity of the approach is also demonstrated on engineering problems. |
id |
RCAP_94d00619ad4c741fb3706965aa9ac752 |
---|---|
oai_identifier_str |
oai:repositorium.sdum.uminho.pt:1822/53020 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Multiobjective evolutionary algorithm based on vector angle neighborhoodMultiobjective optimizationEvolutionary algorithmsScience & TechnologySelection is a major driving force behind evolution and is a key feature of multiobjective evolutionary algorithms. Selection aims at promoting the survival and reproduction of individuals that are most fitted to a given environment. In the presence of multiple objectives, major challenges faced by this operator come from the need to address both the population convergence and diversity, which are conflicting to a certain extent. This paper proposes a new selection scheme for evolutionary multiobjective optimization. Its distinctive feature is a similarity measure for estimating the population diversity, which is based on the angle between the objective vectors. The smaller the angle, the more similar individuals. The concept of similarity is exploited during the mating by defining the neighborhood and the replacement by determining the most crowded region where the worst individual is identified. The latter is performed on the basis of a convergence measure that plays a major role in guiding the population towards the Pareto optimal front. The proposed algorithm is intended to exploit strengths of decomposition-based approaches in promoting diversity among the population while reducing the user's burden of specifying weight vectors before the search. The proposed approach is validated by computational experiments with state-of-the-art algorithms on problems with different characteristics. The obtained results indicate a highly competitive performance of the proposed approach. Significant advantages are revealed when dealing with problems posing substantial difficulties in keeping diversity, including many-objective problems. The relevance of the suggested similarity and convergence measures are shown. The validity of the approach is also demonstrated on engineering problems.This work was supported by the Portuguese Fundacao para a Ciencia e Tecnologia under grant PEst-C/CTM/LA0025/2013 (Projecto Estrategico - LA 25 - 2013-2014 - Strategic Project - LA 25 - 2013-2014).info:eu-repo/semantics/publishedVersionElsevier Science BVUniversidade do MinhoDenysiuk, RomanGaspar-Cunha, A.2017-12-012017-12-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/1822/53020eng2210-650210.1016/j.swevo.2017.05.005info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-05-11T04:35:54Zoai:repositorium.sdum.uminho.pt:1822/53020Portal AgregadorONGhttps://www.rcaap.pt/oai/openairemluisa.alvim@gmail.comopendoar:71602024-05-11T04:35:54Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Multiobjective evolutionary algorithm based on vector angle neighborhood |
title |
Multiobjective evolutionary algorithm based on vector angle neighborhood |
spellingShingle |
Multiobjective evolutionary algorithm based on vector angle neighborhood Denysiuk, Roman Multiobjective optimization Evolutionary algorithms Science & Technology |
title_short |
Multiobjective evolutionary algorithm based on vector angle neighborhood |
title_full |
Multiobjective evolutionary algorithm based on vector angle neighborhood |
title_fullStr |
Multiobjective evolutionary algorithm based on vector angle neighborhood |
title_full_unstemmed |
Multiobjective evolutionary algorithm based on vector angle neighborhood |
title_sort |
Multiobjective evolutionary algorithm based on vector angle neighborhood |
author |
Denysiuk, Roman |
author_facet |
Denysiuk, Roman Gaspar-Cunha, A. |
author_role |
author |
author2 |
Gaspar-Cunha, A. |
author2_role |
author |
dc.contributor.none.fl_str_mv |
Universidade do Minho |
dc.contributor.author.fl_str_mv |
Denysiuk, Roman Gaspar-Cunha, A. |
dc.subject.por.fl_str_mv |
Multiobjective optimization Evolutionary algorithms Science & Technology |
topic |
Multiobjective optimization Evolutionary algorithms Science & Technology |
description |
Selection is a major driving force behind evolution and is a key feature of multiobjective evolutionary algorithms. Selection aims at promoting the survival and reproduction of individuals that are most fitted to a given environment. In the presence of multiple objectives, major challenges faced by this operator come from the need to address both the population convergence and diversity, which are conflicting to a certain extent. This paper proposes a new selection scheme for evolutionary multiobjective optimization. Its distinctive feature is a similarity measure for estimating the population diversity, which is based on the angle between the objective vectors. The smaller the angle, the more similar individuals. The concept of similarity is exploited during the mating by defining the neighborhood and the replacement by determining the most crowded region where the worst individual is identified. The latter is performed on the basis of a convergence measure that plays a major role in guiding the population towards the Pareto optimal front. The proposed algorithm is intended to exploit strengths of decomposition-based approaches in promoting diversity among the population while reducing the user's burden of specifying weight vectors before the search. The proposed approach is validated by computational experiments with state-of-the-art algorithms on problems with different characteristics. The obtained results indicate a highly competitive performance of the proposed approach. Significant advantages are revealed when dealing with problems posing substantial difficulties in keeping diversity, including many-objective problems. The relevance of the suggested similarity and convergence measures are shown. The validity of the approach is also demonstrated on engineering problems. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-12-01 2017-12-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/1822/53020 |
url |
http://hdl.handle.net/1822/53020 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
2210-6502 10.1016/j.swevo.2017.05.005 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science BV |
publisher.none.fl_str_mv |
Elsevier Science BV |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
mluisa.alvim@gmail.com |
_version_ |
1817544359435829248 |