Gravitational-wave parameter inference with the newman-penrose scalar
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Outros Autores: | , , , , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10773/40058 |
Resumo: | Detection and parameter inference of gravitational-wave signals from compact mergers rely on the comparison of the incoming detector strain data dðtÞ to waveform templates for the gravitational-wave strain hðtÞ that ultimately rely on the resolution of Einstein’s equations via numerical relativity simulations. These, however, commonly output a quantity known as the Newman-Penrose scalar ψ4ðtÞ which, under the Bondi gauge, is related to the gravitational-wave strain by ψ4ðtÞ ¼ d2hðtÞ=dt2 . Therefore, obtaining strain templates involves an integration process that introduces artifacts that need to be treated in a rather manual way. By taking second-order finite differences on the detector data and inferring the corresponding background noise distribution, we develop a framework to perform gravitational-wave data analysis directly using ψ4ðtÞ templates. We first demonstrate this formalism, and the impact of integration artifacts in strain templates, through the recovery of numerically simulated signals from head-on collisions of Proca stars injected in Advanced LIGO noise. Next, we reanalyze the event GW190521 under the hypothesis of a Proca-star merger, obtaining results equivalent to those previously published [Phys. Rev. Lett. 126, 081101 (2021)], where we used the classical strain framework. We find, however, that integration errors would strongly impact our analysis if GW190521 was 4 times louder. Finally, we show that our framework fixes significant biases in the interpretation of the high-mass gravitational-wave trigger S200114f arising from the usage of strain templates. We remove the need to obtain strain waveforms from numerical relativity simulations, avoiding the associated systematic errors. |
id |
RCAP_94d9b44b93d25fef5b3af17ba5fea150 |
---|---|
oai_identifier_str |
oai:ria.ua.pt:10773/40058 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Gravitational-wave parameter inference with the newman-penrose scalarAstrophysicsGravitationDetection and parameter inference of gravitational-wave signals from compact mergers rely on the comparison of the incoming detector strain data dðtÞ to waveform templates for the gravitational-wave strain hðtÞ that ultimately rely on the resolution of Einstein’s equations via numerical relativity simulations. These, however, commonly output a quantity known as the Newman-Penrose scalar ψ4ðtÞ which, under the Bondi gauge, is related to the gravitational-wave strain by ψ4ðtÞ ¼ d2hðtÞ=dt2 . Therefore, obtaining strain templates involves an integration process that introduces artifacts that need to be treated in a rather manual way. By taking second-order finite differences on the detector data and inferring the corresponding background noise distribution, we develop a framework to perform gravitational-wave data analysis directly using ψ4ðtÞ templates. We first demonstrate this formalism, and the impact of integration artifacts in strain templates, through the recovery of numerically simulated signals from head-on collisions of Proca stars injected in Advanced LIGO noise. Next, we reanalyze the event GW190521 under the hypothesis of a Proca-star merger, obtaining results equivalent to those previously published [Phys. Rev. Lett. 126, 081101 (2021)], where we used the classical strain framework. We find, however, that integration errors would strongly impact our analysis if GW190521 was 4 times louder. Finally, we show that our framework fixes significant biases in the interpretation of the high-mass gravitational-wave trigger S200114f arising from the usage of strain templates. We remove the need to obtain strain waveforms from numerical relativity simulations, avoiding the associated systematic errors.American Physical Society2024-01-11T10:26:34Z2023-01-01T00:00:00Z2023info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/40058eng10.1103/PhysRevX.13.041048Bustillo, Juan CalderónWong, Isaac C. F.Sanchis-Gual, NicolasLeong, Samson H. W.Torres-Forné, AlejandroChandra, KoustavFont, José A.Herdeiro, CarlosRadu, EugenLi, Tjonnie G. F.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T12:18:18Zoai:ria.ua.pt:10773/40058Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:10:08.512990Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Gravitational-wave parameter inference with the newman-penrose scalar |
title |
Gravitational-wave parameter inference with the newman-penrose scalar |
spellingShingle |
Gravitational-wave parameter inference with the newman-penrose scalar Bustillo, Juan Calderón Astrophysics Gravitation |
title_short |
Gravitational-wave parameter inference with the newman-penrose scalar |
title_full |
Gravitational-wave parameter inference with the newman-penrose scalar |
title_fullStr |
Gravitational-wave parameter inference with the newman-penrose scalar |
title_full_unstemmed |
Gravitational-wave parameter inference with the newman-penrose scalar |
title_sort |
Gravitational-wave parameter inference with the newman-penrose scalar |
author |
Bustillo, Juan Calderón |
author_facet |
Bustillo, Juan Calderón Wong, Isaac C. F. Sanchis-Gual, Nicolas Leong, Samson H. W. Torres-Forné, Alejandro Chandra, Koustav Font, José A. Herdeiro, Carlos Radu, Eugen Li, Tjonnie G. F. |
author_role |
author |
author2 |
Wong, Isaac C. F. Sanchis-Gual, Nicolas Leong, Samson H. W. Torres-Forné, Alejandro Chandra, Koustav Font, José A. Herdeiro, Carlos Radu, Eugen Li, Tjonnie G. F. |
author2_role |
author author author author author author author author author |
dc.contributor.author.fl_str_mv |
Bustillo, Juan Calderón Wong, Isaac C. F. Sanchis-Gual, Nicolas Leong, Samson H. W. Torres-Forné, Alejandro Chandra, Koustav Font, José A. Herdeiro, Carlos Radu, Eugen Li, Tjonnie G. F. |
dc.subject.por.fl_str_mv |
Astrophysics Gravitation |
topic |
Astrophysics Gravitation |
description |
Detection and parameter inference of gravitational-wave signals from compact mergers rely on the comparison of the incoming detector strain data dðtÞ to waveform templates for the gravitational-wave strain hðtÞ that ultimately rely on the resolution of Einstein’s equations via numerical relativity simulations. These, however, commonly output a quantity known as the Newman-Penrose scalar ψ4ðtÞ which, under the Bondi gauge, is related to the gravitational-wave strain by ψ4ðtÞ ¼ d2hðtÞ=dt2 . Therefore, obtaining strain templates involves an integration process that introduces artifacts that need to be treated in a rather manual way. By taking second-order finite differences on the detector data and inferring the corresponding background noise distribution, we develop a framework to perform gravitational-wave data analysis directly using ψ4ðtÞ templates. We first demonstrate this formalism, and the impact of integration artifacts in strain templates, through the recovery of numerically simulated signals from head-on collisions of Proca stars injected in Advanced LIGO noise. Next, we reanalyze the event GW190521 under the hypothesis of a Proca-star merger, obtaining results equivalent to those previously published [Phys. Rev. Lett. 126, 081101 (2021)], where we used the classical strain framework. We find, however, that integration errors would strongly impact our analysis if GW190521 was 4 times louder. Finally, we show that our framework fixes significant biases in the interpretation of the high-mass gravitational-wave trigger S200114f arising from the usage of strain templates. We remove the need to obtain strain waveforms from numerical relativity simulations, avoiding the associated systematic errors. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-01-01T00:00:00Z 2023 2024-01-11T10:26:34Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10773/40058 |
url |
http://hdl.handle.net/10773/40058 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1103/PhysRevX.13.041048 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
American Physical Society |
publisher.none.fl_str_mv |
American Physical Society |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799137751792091136 |