Gravitational-wave parameter inference with the newman-penrose scalar

Detalhes bibliográficos
Autor(a) principal: Bustillo, Juan Calderón
Data de Publicação: 2023
Outros Autores: Wong, Isaac C. F., Sanchis-Gual, Nicolas, Leong, Samson H. W., Torres-Forné, Alejandro, Chandra, Koustav, Font, José A., Herdeiro, Carlos, Radu, Eugen, Li, Tjonnie G. F.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10773/40058
Resumo: Detection and parameter inference of gravitational-wave signals from compact mergers rely on the comparison of the incoming detector strain data dðtÞ to waveform templates for the gravitational-wave strain hðtÞ that ultimately rely on the resolution of Einstein’s equations via numerical relativity simulations. These, however, commonly output a quantity known as the Newman-Penrose scalar ψ4ðtÞ which, under the Bondi gauge, is related to the gravitational-wave strain by ψ4ðtÞ ¼ d2hðtÞ=dt2 . Therefore, obtaining strain templates involves an integration process that introduces artifacts that need to be treated in a rather manual way. By taking second-order finite differences on the detector data and inferring the corresponding background noise distribution, we develop a framework to perform gravitational-wave data analysis directly using ψ4ðtÞ templates. We first demonstrate this formalism, and the impact of integration artifacts in strain templates, through the recovery of numerically simulated signals from head-on collisions of Proca stars injected in Advanced LIGO noise. Next, we reanalyze the event GW190521 under the hypothesis of a Proca-star merger, obtaining results equivalent to those previously published [Phys. Rev. Lett. 126, 081101 (2021)], where we used the classical strain framework. We find, however, that integration errors would strongly impact our analysis if GW190521 was 4 times louder. Finally, we show that our framework fixes significant biases in the interpretation of the high-mass gravitational-wave trigger S200114f arising from the usage of strain templates. We remove the need to obtain strain waveforms from numerical relativity simulations, avoiding the associated systematic errors.
id RCAP_94d9b44b93d25fef5b3af17ba5fea150
oai_identifier_str oai:ria.ua.pt:10773/40058
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Gravitational-wave parameter inference with the newman-penrose scalarAstrophysicsGravitationDetection and parameter inference of gravitational-wave signals from compact mergers rely on the comparison of the incoming detector strain data dðtÞ to waveform templates for the gravitational-wave strain hðtÞ that ultimately rely on the resolution of Einstein’s equations via numerical relativity simulations. These, however, commonly output a quantity known as the Newman-Penrose scalar ψ4ðtÞ which, under the Bondi gauge, is related to the gravitational-wave strain by ψ4ðtÞ ¼ d2hðtÞ=dt2 . Therefore, obtaining strain templates involves an integration process that introduces artifacts that need to be treated in a rather manual way. By taking second-order finite differences on the detector data and inferring the corresponding background noise distribution, we develop a framework to perform gravitational-wave data analysis directly using ψ4ðtÞ templates. We first demonstrate this formalism, and the impact of integration artifacts in strain templates, through the recovery of numerically simulated signals from head-on collisions of Proca stars injected in Advanced LIGO noise. Next, we reanalyze the event GW190521 under the hypothesis of a Proca-star merger, obtaining results equivalent to those previously published [Phys. Rev. Lett. 126, 081101 (2021)], where we used the classical strain framework. We find, however, that integration errors would strongly impact our analysis if GW190521 was 4 times louder. Finally, we show that our framework fixes significant biases in the interpretation of the high-mass gravitational-wave trigger S200114f arising from the usage of strain templates. We remove the need to obtain strain waveforms from numerical relativity simulations, avoiding the associated systematic errors.American Physical Society2024-01-11T10:26:34Z2023-01-01T00:00:00Z2023info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/40058eng10.1103/PhysRevX.13.041048Bustillo, Juan CalderónWong, Isaac C. F.Sanchis-Gual, NicolasLeong, Samson H. W.Torres-Forné, AlejandroChandra, KoustavFont, José A.Herdeiro, CarlosRadu, EugenLi, Tjonnie G. F.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T12:18:18Zoai:ria.ua.pt:10773/40058Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:10:08.512990Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Gravitational-wave parameter inference with the newman-penrose scalar
title Gravitational-wave parameter inference with the newman-penrose scalar
spellingShingle Gravitational-wave parameter inference with the newman-penrose scalar
Bustillo, Juan Calderón
Astrophysics
Gravitation
title_short Gravitational-wave parameter inference with the newman-penrose scalar
title_full Gravitational-wave parameter inference with the newman-penrose scalar
title_fullStr Gravitational-wave parameter inference with the newman-penrose scalar
title_full_unstemmed Gravitational-wave parameter inference with the newman-penrose scalar
title_sort Gravitational-wave parameter inference with the newman-penrose scalar
author Bustillo, Juan Calderón
author_facet Bustillo, Juan Calderón
Wong, Isaac C. F.
Sanchis-Gual, Nicolas
Leong, Samson H. W.
Torres-Forné, Alejandro
Chandra, Koustav
Font, José A.
Herdeiro, Carlos
Radu, Eugen
Li, Tjonnie G. F.
author_role author
author2 Wong, Isaac C. F.
Sanchis-Gual, Nicolas
Leong, Samson H. W.
Torres-Forné, Alejandro
Chandra, Koustav
Font, José A.
Herdeiro, Carlos
Radu, Eugen
Li, Tjonnie G. F.
author2_role author
author
author
author
author
author
author
author
author
dc.contributor.author.fl_str_mv Bustillo, Juan Calderón
Wong, Isaac C. F.
Sanchis-Gual, Nicolas
Leong, Samson H. W.
Torres-Forné, Alejandro
Chandra, Koustav
Font, José A.
Herdeiro, Carlos
Radu, Eugen
Li, Tjonnie G. F.
dc.subject.por.fl_str_mv Astrophysics
Gravitation
topic Astrophysics
Gravitation
description Detection and parameter inference of gravitational-wave signals from compact mergers rely on the comparison of the incoming detector strain data dðtÞ to waveform templates for the gravitational-wave strain hðtÞ that ultimately rely on the resolution of Einstein’s equations via numerical relativity simulations. These, however, commonly output a quantity known as the Newman-Penrose scalar ψ4ðtÞ which, under the Bondi gauge, is related to the gravitational-wave strain by ψ4ðtÞ ¼ d2hðtÞ=dt2 . Therefore, obtaining strain templates involves an integration process that introduces artifacts that need to be treated in a rather manual way. By taking second-order finite differences on the detector data and inferring the corresponding background noise distribution, we develop a framework to perform gravitational-wave data analysis directly using ψ4ðtÞ templates. We first demonstrate this formalism, and the impact of integration artifacts in strain templates, through the recovery of numerically simulated signals from head-on collisions of Proca stars injected in Advanced LIGO noise. Next, we reanalyze the event GW190521 under the hypothesis of a Proca-star merger, obtaining results equivalent to those previously published [Phys. Rev. Lett. 126, 081101 (2021)], where we used the classical strain framework. We find, however, that integration errors would strongly impact our analysis if GW190521 was 4 times louder. Finally, we show that our framework fixes significant biases in the interpretation of the high-mass gravitational-wave trigger S200114f arising from the usage of strain templates. We remove the need to obtain strain waveforms from numerical relativity simulations, avoiding the associated systematic errors.
publishDate 2023
dc.date.none.fl_str_mv 2023-01-01T00:00:00Z
2023
2024-01-11T10:26:34Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/40058
url http://hdl.handle.net/10773/40058
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1103/PhysRevX.13.041048
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv American Physical Society
publisher.none.fl_str_mv American Physical Society
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137751792091136