Modelling Molecular and Inorganic Data of Amanita ponderosa Mushrooms using Artificial Neural Networks

Detalhes bibliográficos
Autor(a) principal: Salvador, Cátia
Data de Publicação: 2013
Outros Autores: Martins, M. Rosário, Vicente, Henrique, Neves, José, Arteiro, José, Caldeira, A. Teresa
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10174/7398
https://doi.org/10.1007/s10457-012-9548-y
Resumo: Abstract Wild edible mushrooms Amanita ponderosa Malenc¸on and Heim are very appreciated in gastronomy, with high export potential. This species grows in some microclimates, namely in the southwest of the Iberian Peninsula. The results obtained demonstrate that A. ponderosa mushrooms showed different inorganic composition according to their habitat and the molecular data, obtained by M13-PCR, allowed to distinguish the mushrooms at species level and to differentiate the A. ponderosa strains according to their location. Taking into account, on the one hand, that the characterisation of different strains is essential in further commercialisation and certification process and, on the other hand, the molecular studies are quite time consuming and an expensive process, the development of formal models to predict the molecular profile based on inorganic composition comes to be something essential. In the present work, Artificial Neural Networks (ANNs) were used to solve this problem. The ANN selected to predict molecular profile based on inorganic composition has a 6-7-14 topology. A good match between the observed and predicted values was observed. The present findings are wide potential application and both health and economical benefits arise from this study.
id RCAP_9500378da8071b637c0592e584049bf8
oai_identifier_str oai:dspace.uevora.pt:10174/7398
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Modelling Molecular and Inorganic Data of Amanita ponderosa Mushrooms using Artificial Neural NetworksEctomycorrhizal macrofungiWild edible mushroomsM13-PCRInorganic compositionArtificial intelligence based toolsAbstract Wild edible mushrooms Amanita ponderosa Malenc¸on and Heim are very appreciated in gastronomy, with high export potential. This species grows in some microclimates, namely in the southwest of the Iberian Peninsula. The results obtained demonstrate that A. ponderosa mushrooms showed different inorganic composition according to their habitat and the molecular data, obtained by M13-PCR, allowed to distinguish the mushrooms at species level and to differentiate the A. ponderosa strains according to their location. Taking into account, on the one hand, that the characterisation of different strains is essential in further commercialisation and certification process and, on the other hand, the molecular studies are quite time consuming and an expensive process, the development of formal models to predict the molecular profile based on inorganic composition comes to be something essential. In the present work, Artificial Neural Networks (ANNs) were used to solve this problem. The ANN selected to predict molecular profile based on inorganic composition has a 6-7-14 topology. A good match between the observed and predicted values was observed. The present findings are wide potential application and both health and economical benefits arise from this study.Springer2013-01-17T15:19:15Z2013-01-172013-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10174/7398http://hdl.handle.net/10174/7398https://doi.org/10.1007/s10457-012-9548-yengSalvador, C., Martins, M.R., Vicente, H., Neves, J., Arteiro, J.M., Caldeira, A.T., Modelling Molecular and Inorganic Data of Amanita ponderosa Mushrooms using Artificial Neural Networks. Agroforestry Systems, 87: 295–302, 2013.295-3020167-436687Agroforestry Systems2QUI,ICAAMcscs@uevora.ptmrm@uevora.pthvicente@uevora.ptjneves@di.uminho.ptjmsa@uevora.ptatc@uevora.ptModelling Molecular and Inorganic Data of Amanita ponderosa Mushrooms using Artificial Neural Networks303303Salvador, CátiaMartins, M. RosárioVicente, HenriqueNeves, JoséArteiro, JoséCaldeira, A. Teresainfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-01-03T18:47:36Zoai:dspace.uevora.pt:10174/7398Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T01:01:56.008642Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Modelling Molecular and Inorganic Data of Amanita ponderosa Mushrooms using Artificial Neural Networks
title Modelling Molecular and Inorganic Data of Amanita ponderosa Mushrooms using Artificial Neural Networks
spellingShingle Modelling Molecular and Inorganic Data of Amanita ponderosa Mushrooms using Artificial Neural Networks
Salvador, Cátia
Ectomycorrhizal macrofungi
Wild edible mushrooms
M13-PCR
Inorganic composition
Artificial intelligence based tools
title_short Modelling Molecular and Inorganic Data of Amanita ponderosa Mushrooms using Artificial Neural Networks
title_full Modelling Molecular and Inorganic Data of Amanita ponderosa Mushrooms using Artificial Neural Networks
title_fullStr Modelling Molecular and Inorganic Data of Amanita ponderosa Mushrooms using Artificial Neural Networks
title_full_unstemmed Modelling Molecular and Inorganic Data of Amanita ponderosa Mushrooms using Artificial Neural Networks
title_sort Modelling Molecular and Inorganic Data of Amanita ponderosa Mushrooms using Artificial Neural Networks
author Salvador, Cátia
author_facet Salvador, Cátia
Martins, M. Rosário
Vicente, Henrique
Neves, José
Arteiro, José
Caldeira, A. Teresa
author_role author
author2 Martins, M. Rosário
Vicente, Henrique
Neves, José
Arteiro, José
Caldeira, A. Teresa
author2_role author
author
author
author
author
dc.contributor.author.fl_str_mv Salvador, Cátia
Martins, M. Rosário
Vicente, Henrique
Neves, José
Arteiro, José
Caldeira, A. Teresa
dc.subject.por.fl_str_mv Ectomycorrhizal macrofungi
Wild edible mushrooms
M13-PCR
Inorganic composition
Artificial intelligence based tools
topic Ectomycorrhizal macrofungi
Wild edible mushrooms
M13-PCR
Inorganic composition
Artificial intelligence based tools
description Abstract Wild edible mushrooms Amanita ponderosa Malenc¸on and Heim are very appreciated in gastronomy, with high export potential. This species grows in some microclimates, namely in the southwest of the Iberian Peninsula. The results obtained demonstrate that A. ponderosa mushrooms showed different inorganic composition according to their habitat and the molecular data, obtained by M13-PCR, allowed to distinguish the mushrooms at species level and to differentiate the A. ponderosa strains according to their location. Taking into account, on the one hand, that the characterisation of different strains is essential in further commercialisation and certification process and, on the other hand, the molecular studies are quite time consuming and an expensive process, the development of formal models to predict the molecular profile based on inorganic composition comes to be something essential. In the present work, Artificial Neural Networks (ANNs) were used to solve this problem. The ANN selected to predict molecular profile based on inorganic composition has a 6-7-14 topology. A good match between the observed and predicted values was observed. The present findings are wide potential application and both health and economical benefits arise from this study.
publishDate 2013
dc.date.none.fl_str_mv 2013-01-17T15:19:15Z
2013-01-17
2013-01-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10174/7398
http://hdl.handle.net/10174/7398
https://doi.org/10.1007/s10457-012-9548-y
url http://hdl.handle.net/10174/7398
https://doi.org/10.1007/s10457-012-9548-y
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Salvador, C., Martins, M.R., Vicente, H., Neves, J., Arteiro, J.M., Caldeira, A.T., Modelling Molecular and Inorganic Data of Amanita ponderosa Mushrooms using Artificial Neural Networks. Agroforestry Systems, 87: 295–302, 2013.
295-302
0167-4366
87
Agroforestry Systems
2
QUI,ICAAM
cscs@uevora.pt
mrm@uevora.pt
hvicente@uevora.pt
jneves@di.uminho.pt
jmsa@uevora.pt
atc@uevora.pt
Modelling Molecular and Inorganic Data of Amanita ponderosa Mushrooms using Artificial Neural Networks
303
303
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799136503158276096