Hyperml and deep interest network to build a recommender system for modatta: measuring the effectiveness of targeting users with new offers
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10362/140156 |
Resumo: | Modatta aims at giving users control over their data and marketers the opportunity to target users with the right campaigns. Therefore, this paper proposes the use of Deep Learning to find users’ representations, so their data is kept private, but they can still learn about their interests. A Recommender System for predicting new interests is built to create a more complete representation of the users, which allows Modatta to find the offers that are of their most interest. After implementing the targeting strategy, this study shows how to evaluate the effectiveness of a campaign that could be conducted by Modatta. |
id |
RCAP_950eb11411974a1f3352cba1dabe4305 |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/140156 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Hyperml and deep interest network to build a recommender system for modatta: measuring the effectiveness of targeting users with new offersMachine learningDeep learningHyperbolic embeddingsData monetizationRecommender systemTargeted marketingCampaign effectivenessBusiness analysisDomínio/Área Científica::Ciências Sociais::Economia e GestãoModatta aims at giving users control over their data and marketers the opportunity to target users with the right campaigns. Therefore, this paper proposes the use of Deep Learning to find users’ representations, so their data is kept private, but they can still learn about their interests. A Recommender System for predicting new interests is built to create a more complete representation of the users, which allows Modatta to find the offers that are of their most interest. After implementing the targeting strategy, this study shows how to evaluate the effectiveness of a campaign that could be conducted by Modatta.Han, QiweiMoretti, RodrigoPinto (Modatta), EduardoRUNLucas, Carolina Carvalho2022-06-17T13:51:09Z2022-01-212021-02-142022-01-21T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/140156TID:202997383enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T05:17:16Zoai:run.unl.pt:10362/140156Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:49:35.483859Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Hyperml and deep interest network to build a recommender system for modatta: measuring the effectiveness of targeting users with new offers |
title |
Hyperml and deep interest network to build a recommender system for modatta: measuring the effectiveness of targeting users with new offers |
spellingShingle |
Hyperml and deep interest network to build a recommender system for modatta: measuring the effectiveness of targeting users with new offers Lucas, Carolina Carvalho Machine learning Deep learning Hyperbolic embeddings Data monetization Recommender system Targeted marketing Campaign effectiveness Business analysis Domínio/Área Científica::Ciências Sociais::Economia e Gestão |
title_short |
Hyperml and deep interest network to build a recommender system for modatta: measuring the effectiveness of targeting users with new offers |
title_full |
Hyperml and deep interest network to build a recommender system for modatta: measuring the effectiveness of targeting users with new offers |
title_fullStr |
Hyperml and deep interest network to build a recommender system for modatta: measuring the effectiveness of targeting users with new offers |
title_full_unstemmed |
Hyperml and deep interest network to build a recommender system for modatta: measuring the effectiveness of targeting users with new offers |
title_sort |
Hyperml and deep interest network to build a recommender system for modatta: measuring the effectiveness of targeting users with new offers |
author |
Lucas, Carolina Carvalho |
author_facet |
Lucas, Carolina Carvalho |
author_role |
author |
dc.contributor.none.fl_str_mv |
Han, Qiwei Moretti, Rodrigo Pinto (Modatta), Eduardo RUN |
dc.contributor.author.fl_str_mv |
Lucas, Carolina Carvalho |
dc.subject.por.fl_str_mv |
Machine learning Deep learning Hyperbolic embeddings Data monetization Recommender system Targeted marketing Campaign effectiveness Business analysis Domínio/Área Científica::Ciências Sociais::Economia e Gestão |
topic |
Machine learning Deep learning Hyperbolic embeddings Data monetization Recommender system Targeted marketing Campaign effectiveness Business analysis Domínio/Área Científica::Ciências Sociais::Economia e Gestão |
description |
Modatta aims at giving users control over their data and marketers the opportunity to target users with the right campaigns. Therefore, this paper proposes the use of Deep Learning to find users’ representations, so their data is kept private, but they can still learn about their interests. A Recommender System for predicting new interests is built to create a more complete representation of the users, which allows Modatta to find the offers that are of their most interest. After implementing the targeting strategy, this study shows how to evaluate the effectiveness of a campaign that could be conducted by Modatta. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-02-14 2022-06-17T13:51:09Z 2022-01-21 2022-01-21T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/140156 TID:202997383 |
url |
http://hdl.handle.net/10362/140156 |
identifier_str_mv |
TID:202997383 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799138094528593920 |