Local estimates for minimizers of some convex integral functional of the gradient and the Strong Maximum Principle

Detalhes bibliográficos
Autor(a) principal: Goncharov, Vladimir
Data de Publicação: 2011
Outros Autores: Santos, Telma
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10174/4594
Resumo: We consider a class of convex integral functionals with lagrangeans depending only on the gradient and satisfying a generalized symmetry assumption, which includes as a particular case the rotational symmetry. Adapting the method by A. Cellina we obtain a kind of local estimates for minimizers in the respective variational problems, which is applied then to deduce some versions of the Strong Maximum Principle in the variational setting.
id RCAP_952ae756b8ad5b21ddafa8a5d7989a8d
oai_identifier_str oai:dspace.uevora.pt:10174/4594
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Local estimates for minimizers of some convex integral functional of the gradient and the Strong Maximum PrincipleStrong Maximum Principlecomparison theoremsconvex variational problemsMinkowski functionalWe consider a class of convex integral functionals with lagrangeans depending only on the gradient and satisfying a generalized symmetry assumption, which includes as a particular case the rotational symmetry. Adapting the method by A. Cellina we obtain a kind of local estimates for minimizers in the respective variational problems, which is applied then to deduce some versions of the Strong Maximum Principle in the variational setting.2012-01-30T17:24:37Z2012-01-302011-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10174/4594http://hdl.handle.net/10174/4594eng179-20219Set-Valued and Variational Analysisgoncha@uevora.pttjfs@uevora.ptLocal estimates for minimizers of some convex integral functional of the gradient and the Strong Maximum Principle334Goncharov, VladimirSantos, Telmainfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-01-03T18:42:48Zoai:dspace.uevora.pt:10174/4594Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T00:59:51.438529Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Local estimates for minimizers of some convex integral functional of the gradient and the Strong Maximum Principle
title Local estimates for minimizers of some convex integral functional of the gradient and the Strong Maximum Principle
spellingShingle Local estimates for minimizers of some convex integral functional of the gradient and the Strong Maximum Principle
Goncharov, Vladimir
Strong Maximum Principle
comparison theorems
convex variational problems
Minkowski functional
title_short Local estimates for minimizers of some convex integral functional of the gradient and the Strong Maximum Principle
title_full Local estimates for minimizers of some convex integral functional of the gradient and the Strong Maximum Principle
title_fullStr Local estimates for minimizers of some convex integral functional of the gradient and the Strong Maximum Principle
title_full_unstemmed Local estimates for minimizers of some convex integral functional of the gradient and the Strong Maximum Principle
title_sort Local estimates for minimizers of some convex integral functional of the gradient and the Strong Maximum Principle
author Goncharov, Vladimir
author_facet Goncharov, Vladimir
Santos, Telma
author_role author
author2 Santos, Telma
author2_role author
dc.contributor.author.fl_str_mv Goncharov, Vladimir
Santos, Telma
dc.subject.por.fl_str_mv Strong Maximum Principle
comparison theorems
convex variational problems
Minkowski functional
topic Strong Maximum Principle
comparison theorems
convex variational problems
Minkowski functional
description We consider a class of convex integral functionals with lagrangeans depending only on the gradient and satisfying a generalized symmetry assumption, which includes as a particular case the rotational symmetry. Adapting the method by A. Cellina we obtain a kind of local estimates for minimizers in the respective variational problems, which is applied then to deduce some versions of the Strong Maximum Principle in the variational setting.
publishDate 2011
dc.date.none.fl_str_mv 2011-01-01T00:00:00Z
2012-01-30T17:24:37Z
2012-01-30
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10174/4594
http://hdl.handle.net/10174/4594
url http://hdl.handle.net/10174/4594
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 179-202
19
Set-Valued and Variational Analysis
goncha@uevora.pt
tjfs@uevora.pt
Local estimates for minimizers of some convex integral functional of the gradient and the Strong Maximum Principle
334
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799136480822558720