Local estimates for minimizers of some convex integral functional of the gradient and the Strong Maximum Principle
Autor(a) principal: | |
---|---|
Data de Publicação: | 2011 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10174/4594 |
Resumo: | We consider a class of convex integral functionals with lagrangeans depending only on the gradient and satisfying a generalized symmetry assumption, which includes as a particular case the rotational symmetry. Adapting the method by A. Cellina we obtain a kind of local estimates for minimizers in the respective variational problems, which is applied then to deduce some versions of the Strong Maximum Principle in the variational setting. |
id |
RCAP_952ae756b8ad5b21ddafa8a5d7989a8d |
---|---|
oai_identifier_str |
oai:dspace.uevora.pt:10174/4594 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Local estimates for minimizers of some convex integral functional of the gradient and the Strong Maximum PrincipleStrong Maximum Principlecomparison theoremsconvex variational problemsMinkowski functionalWe consider a class of convex integral functionals with lagrangeans depending only on the gradient and satisfying a generalized symmetry assumption, which includes as a particular case the rotational symmetry. Adapting the method by A. Cellina we obtain a kind of local estimates for minimizers in the respective variational problems, which is applied then to deduce some versions of the Strong Maximum Principle in the variational setting.2012-01-30T17:24:37Z2012-01-302011-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10174/4594http://hdl.handle.net/10174/4594eng179-20219Set-Valued and Variational Analysisgoncha@uevora.pttjfs@uevora.ptLocal estimates for minimizers of some convex integral functional of the gradient and the Strong Maximum Principle334Goncharov, VladimirSantos, Telmainfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-01-03T18:42:48Zoai:dspace.uevora.pt:10174/4594Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T00:59:51.438529Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Local estimates for minimizers of some convex integral functional of the gradient and the Strong Maximum Principle |
title |
Local estimates for minimizers of some convex integral functional of the gradient and the Strong Maximum Principle |
spellingShingle |
Local estimates for minimizers of some convex integral functional of the gradient and the Strong Maximum Principle Goncharov, Vladimir Strong Maximum Principle comparison theorems convex variational problems Minkowski functional |
title_short |
Local estimates for minimizers of some convex integral functional of the gradient and the Strong Maximum Principle |
title_full |
Local estimates for minimizers of some convex integral functional of the gradient and the Strong Maximum Principle |
title_fullStr |
Local estimates for minimizers of some convex integral functional of the gradient and the Strong Maximum Principle |
title_full_unstemmed |
Local estimates for minimizers of some convex integral functional of the gradient and the Strong Maximum Principle |
title_sort |
Local estimates for minimizers of some convex integral functional of the gradient and the Strong Maximum Principle |
author |
Goncharov, Vladimir |
author_facet |
Goncharov, Vladimir Santos, Telma |
author_role |
author |
author2 |
Santos, Telma |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Goncharov, Vladimir Santos, Telma |
dc.subject.por.fl_str_mv |
Strong Maximum Principle comparison theorems convex variational problems Minkowski functional |
topic |
Strong Maximum Principle comparison theorems convex variational problems Minkowski functional |
description |
We consider a class of convex integral functionals with lagrangeans depending only on the gradient and satisfying a generalized symmetry assumption, which includes as a particular case the rotational symmetry. Adapting the method by A. Cellina we obtain a kind of local estimates for minimizers in the respective variational problems, which is applied then to deduce some versions of the Strong Maximum Principle in the variational setting. |
publishDate |
2011 |
dc.date.none.fl_str_mv |
2011-01-01T00:00:00Z 2012-01-30T17:24:37Z 2012-01-30 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10174/4594 http://hdl.handle.net/10174/4594 |
url |
http://hdl.handle.net/10174/4594 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
179-202 19 Set-Valued and Variational Analysis goncha@uevora.pt tjfs@uevora.pt Local estimates for minimizers of some convex integral functional of the gradient and the Strong Maximum Principle 334 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799136480822558720 |