Decision support systems for rainwater harvesting and runoff control in watersheds

Detalhes bibliográficos
Autor(a) principal: Terêncio, Daniela Patrícia Salgado
Data de Publicação: 2020
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10348/10214
Resumo: Pressure on water resources have been increasing over time, due to external forces such as population growth, irregular distribution, water waste, aquifer contamination and also climate change. Global climate change is expected to intensify current and future tensions over water resources and will increase the frequency and intensity of droughts and floods. Thus, in addition to extreme events such as floods and droughts, water quality and forest fire problems are also a concern. Therefore, some methodologies have been tested to improve, mitigate or help better management and planning of water and thus combat these water-related problems. In Chapter 1, a brief introduction is made about pressures on the water resources and their consequences for the environment and society, while some solutions are suggested. An improved framework model to allocate optimal rainwater harvesting sites in small watersheds for agro-forestry uses is presented in Chapter 2. The developed model aims to select optimal RWH sites based on a multi-criteria analysis involving physical, socioeconomic and ecologic parameters. The choice of specific socio-economic parameters allowed the selection of optimal places away from urban centres or large farming areas, which prevent the use of stream water with excessive anthropogenic nutrients in irrigation that may cause accumulation of nitrosamines in the food chain with severe consequences to human health. Chapter 3 discusses rainwater harvesting in catchments for agro-forestry uses: A study focused on the balance between sustainability values and storage capacity. This model follows the line of the previous chapter, but was significantly improved. In this case, attention was paid to the balance between sustainability values and storage capacity of RWH systems. The study aimed at ranking 384 rainfall collection sub-catchments as regards installation of RWH sites for crop irrigation and forest fire combat. The practice of RWH at the catchment scale is frequently concerned with ecological sustainability values, namely through the aesthetic landscape enhancement. To naturally cope with these values, RWH infrastructure (dam wall) heights must not exceed ≈3 m. The results showed that more engineered dams may not always ensure all sustainability values but warrant much better storage. The limiting parameter was the dam wall height, because 217 sub-catchments were found to drain enough water for irrigation and capable to store it if proper dam wall heights were used. Chapter 4 argue about flood risk attenuation in critical zones of continental Portugal using sustainable detention basins. Within the framework of Directive 60/2007/EC (Floods Directive), Flood Risk Management Plans were developed for 23 critical flood risk zones identified in Portugal, capable to eliminate the high and very high flood risk areas instead of attempting to ensure full control of the flood in all potentially threatened areas. The results showed that the number of sustainable detention basins is reduced by about 30% when the full flood control model is used. Although the results indicate the possibility of installing more unsustainable than sustainable detention basins, in all critical areas, only three do not provide sustainable solutions. Therefore, in these critical areasthe construction of highly designed structures would be mandatory. “Can Land Cover Changes Mitigate Large Floods? A Reflection Based on Partial Least Squares-Path Modeling” was a question we tried to answer in Chapter 5. The aim was to verify, using a Partial least Squares-Path Model (PLS-PM), if changes in specific catchment variables, such as forest occupation or imperviousness of urban areas, would result in lower dam heights. In some realistic scenarios, the forecasted changes comprised 30% increase in forest areas or 30% decrease in impervious urban areas. Other purely academic scenarios were also tested, comprehending, for example, the duplication of forest areas or the reduction of catchment slope. In all cases, however, the dam wall heights did not fall significantly and remained very high. Therefore, the answer to the initial question is that non-structural measures may not always be an efficient way to reduce stream flows in a manner that flood detention can be achieved through construction of sustainable dam structures. Finally, in Chapter 6, the general conclusions and future perspectives were presented.
id RCAP_956298b2708719281eef2528bd987467
oai_identifier_str oai:repositorio.utad.pt:10348/10214
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Decision support systems for rainwater harvesting and runoff control in watershedsRainwater harvestingGeograpRainwater harvesting; Geographic Information Systemhic Information SystemPressure on water resources have been increasing over time, due to external forces such as population growth, irregular distribution, water waste, aquifer contamination and also climate change. Global climate change is expected to intensify current and future tensions over water resources and will increase the frequency and intensity of droughts and floods. Thus, in addition to extreme events such as floods and droughts, water quality and forest fire problems are also a concern. Therefore, some methodologies have been tested to improve, mitigate or help better management and planning of water and thus combat these water-related problems. In Chapter 1, a brief introduction is made about pressures on the water resources and their consequences for the environment and society, while some solutions are suggested. An improved framework model to allocate optimal rainwater harvesting sites in small watersheds for agro-forestry uses is presented in Chapter 2. The developed model aims to select optimal RWH sites based on a multi-criteria analysis involving physical, socioeconomic and ecologic parameters. The choice of specific socio-economic parameters allowed the selection of optimal places away from urban centres or large farming areas, which prevent the use of stream water with excessive anthropogenic nutrients in irrigation that may cause accumulation of nitrosamines in the food chain with severe consequences to human health. Chapter 3 discusses rainwater harvesting in catchments for agro-forestry uses: A study focused on the balance between sustainability values and storage capacity. This model follows the line of the previous chapter, but was significantly improved. In this case, attention was paid to the balance between sustainability values and storage capacity of RWH systems. The study aimed at ranking 384 rainfall collection sub-catchments as regards installation of RWH sites for crop irrigation and forest fire combat. The practice of RWH at the catchment scale is frequently concerned with ecological sustainability values, namely through the aesthetic landscape enhancement. To naturally cope with these values, RWH infrastructure (dam wall) heights must not exceed ≈3 m. The results showed that more engineered dams may not always ensure all sustainability values but warrant much better storage. The limiting parameter was the dam wall height, because 217 sub-catchments were found to drain enough water for irrigation and capable to store it if proper dam wall heights were used. Chapter 4 argue about flood risk attenuation in critical zones of continental Portugal using sustainable detention basins. Within the framework of Directive 60/2007/EC (Floods Directive), Flood Risk Management Plans were developed for 23 critical flood risk zones identified in Portugal, capable to eliminate the high and very high flood risk areas instead of attempting to ensure full control of the flood in all potentially threatened areas. The results showed that the number of sustainable detention basins is reduced by about 30% when the full flood control model is used. Although the results indicate the possibility of installing more unsustainable than sustainable detention basins, in all critical areas, only three do not provide sustainable solutions. Therefore, in these critical areasthe construction of highly designed structures would be mandatory. “Can Land Cover Changes Mitigate Large Floods? A Reflection Based on Partial Least Squares-Path Modeling” was a question we tried to answer in Chapter 5. The aim was to verify, using a Partial least Squares-Path Model (PLS-PM), if changes in specific catchment variables, such as forest occupation or imperviousness of urban areas, would result in lower dam heights. In some realistic scenarios, the forecasted changes comprised 30% increase in forest areas or 30% decrease in impervious urban areas. Other purely academic scenarios were also tested, comprehending, for example, the duplication of forest areas or the reduction of catchment slope. In all cases, however, the dam wall heights did not fall significantly and remained very high. Therefore, the answer to the initial question is that non-structural measures may not always be an efficient way to reduce stream flows in a manner that flood detention can be achieved through construction of sustainable dam structures. Finally, in Chapter 6, the general conclusions and future perspectives were presented.As pressões sobre os recursos hídricos têm aumentado ao longo do tempo, devido a forças externas como crescimento populacional, distribuição irregular, desperdício de água, contaminação de aquíferos e também devido às alterações climáticas. Estas alterações, a nível mundial tendem a intensificar as tensões atuais e futuras sobre os recursos hídricos e aumentar a frequência e a intensidade de secas e inundações. Assim, além destes eventos extremos, a qualidade da água e os problemas com incêndios florestais também são uma preocupação. Portanto, algumas metodologias foram testadas para mitigar ou melhorar a gestão e planeamento hídrico e, assim, combater esses problemas relacionados à água. No capítulo 1, é feita uma breve introdução relacionada com as pressões exercidas sobre os recursos hídricos e suas consequências para o meio ambiente e a sociedade, enquanto algumas soluções são sugeridas. Um modelo que permite encontrar locais ótimos para aproveitamento de água da chuva em pequenas bacias hidrográficas para usos agroflorestais é apresentado no Capítulo 2. O modelo desenvolvido visa selecionar locais ótimos de Aproveitamento de Águas Pluviais (AAP) com base numa análise multicritério através de parâmetros físicos, socioeconómicos e ecológicos. A escolha de parâmetros socioeconómicos específicos permitiu a seleção de locais ótimos fora dos centros urbanos ou grandes áreas agrícolas, que impedem o uso de água com excesso de nutrientes de origem antropogénica na irrigação, que podem causar acumulação de nitrosaminas na cadeia alimentar, com graves consequências para a saúde humana. O capítulo 3 discute a captação de água da chuva em bacias hidrográficas para uso agroflorestal: um estudo focado no equilíbrio entre valores de sustentabilidade e capacidade de armazenamento. Este modelo segue a linha do capítulo anterior, mas foi significativamente aprimorado. Nesse caso, foi dada atenção ao equilíbrio entre os valores de sustentabilidade e a capacidade de armazenamento dos sistemas de AAP. O estudo teve como objetivo classificar 384 sub-bacias de captação de precipitação no que diz respeito à instalação de locais de AAP para irrigação de culturas e combate a incêndios florestais. A prática de AAP à escala da bacia hidrográfica preocupa-se frequentemente com os valores da sustentabilidade ecológica, nomeadamente através da melhoria da paisagem envolvente. Para lidar naturalmente com esses valores, as alturas das infraestruturas de AAP (altura do paramento da represa) não devem exceder ≈3 m. Os resultados mostraram que barragens maiores nem sempre garantem todos os valores de sustentabilidade, mas garantem um armazenamento muito melhor. O parâmetro limitante foi a altura da represa, porque 217 sub-bacias captavam água suficiente para irrigação e eram capazes de armazená-la desde que fossem selecionadas as alturas adequadas da infraestrutura. O capítulo 4 discute a atenuação do risco de inundação em zonas críticas de Portugal continental, usando bacias de retenção sustentáveis. No âmbito da Diretiva 60/2007 / CE (Diretiva de Inundações), foram desenvolvidos Planos de Gestão de Risco de Inundação para 23 zonas críticas de risco de inundação identificadas em Portugal, capazes de eliminar as áreas de alto e muito alto risco de inundação, em vez de tentar garantir o controle total de inundação em todas as áreas potencialmente ameaçadas. Os resultados mostraram que o número de bacias de retenção sustentável é reduzido em cerca de 30% quando o modelo completo de controle de inundação é usado. Embora os resultados indiquem a possibilidade de instalar mais bacias de retenção não-sustentáveis do que sustentáveis, em todas as zonas críticas, apenas três não fornecem soluções sustentáveis. Portanto, nessas zonas críticas, a construção de infraestrutura altamente projetadas seria a única solução. “As alterações do uso do solo podem atenuar grandes inundações? Uma reflexão baseada na modelação de PLS-PM” foi uma pergunta que tentamos responder no capítulo 5. O objetivo era verificar, se alterações em variáveis específicas da bacia hidrográfica, como ocupação florestal ou impermeabilização de áreas urbanas, resultaria em menores alturas de barragens, utilizando um modelo de PLS-PM (Partial Least Square - Path Modeling). Em alguns cenários realistas, as alterações previstas incluíram aumento de 30% nas áreas florestais ou redução de 30% nas áreas urbanas impermeáveis. Também foram testados outros cenários puramente académicos, compreendendo, por exemplo, a duplicação de áreas florestais ou a redução do declive da bacia hidrográfica. Em todos os casos, no entanto, a altura da represa não desceu significativamente, permanecendo muito alta. Portanto, a resposta para a pergunta inicial é que as medidas não estruturais nem sempre podem ser uma resposta eficiente na redução dos escoamentos, assim sendo, a retenção da água que provoca inundações pode ser feita através da construção de barragens sustentáveis. Finalmente, no capítulo 6, foram apresentadas as conclusões gerais e as perspetivas futuras.2020-10-23T15:51:08Z2020-01-10T00:00:00Z2020-01-10info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10348/10214engTerêncio, Daniela Patrícia Salgadoinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-02T12:40:29Zoai:repositorio.utad.pt:10348/10214Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T02:02:36.699375Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Decision support systems for rainwater harvesting and runoff control in watersheds
title Decision support systems for rainwater harvesting and runoff control in watersheds
spellingShingle Decision support systems for rainwater harvesting and runoff control in watersheds
Terêncio, Daniela Patrícia Salgado
Rainwater harvesting
GeograpRainwater harvesting; Geographic Information Systemhic Information System
title_short Decision support systems for rainwater harvesting and runoff control in watersheds
title_full Decision support systems for rainwater harvesting and runoff control in watersheds
title_fullStr Decision support systems for rainwater harvesting and runoff control in watersheds
title_full_unstemmed Decision support systems for rainwater harvesting and runoff control in watersheds
title_sort Decision support systems for rainwater harvesting and runoff control in watersheds
author Terêncio, Daniela Patrícia Salgado
author_facet Terêncio, Daniela Patrícia Salgado
author_role author
dc.contributor.author.fl_str_mv Terêncio, Daniela Patrícia Salgado
dc.subject.por.fl_str_mv Rainwater harvesting
GeograpRainwater harvesting; Geographic Information Systemhic Information System
topic Rainwater harvesting
GeograpRainwater harvesting; Geographic Information Systemhic Information System
description Pressure on water resources have been increasing over time, due to external forces such as population growth, irregular distribution, water waste, aquifer contamination and also climate change. Global climate change is expected to intensify current and future tensions over water resources and will increase the frequency and intensity of droughts and floods. Thus, in addition to extreme events such as floods and droughts, water quality and forest fire problems are also a concern. Therefore, some methodologies have been tested to improve, mitigate or help better management and planning of water and thus combat these water-related problems. In Chapter 1, a brief introduction is made about pressures on the water resources and their consequences for the environment and society, while some solutions are suggested. An improved framework model to allocate optimal rainwater harvesting sites in small watersheds for agro-forestry uses is presented in Chapter 2. The developed model aims to select optimal RWH sites based on a multi-criteria analysis involving physical, socioeconomic and ecologic parameters. The choice of specific socio-economic parameters allowed the selection of optimal places away from urban centres or large farming areas, which prevent the use of stream water with excessive anthropogenic nutrients in irrigation that may cause accumulation of nitrosamines in the food chain with severe consequences to human health. Chapter 3 discusses rainwater harvesting in catchments for agro-forestry uses: A study focused on the balance between sustainability values and storage capacity. This model follows the line of the previous chapter, but was significantly improved. In this case, attention was paid to the balance between sustainability values and storage capacity of RWH systems. The study aimed at ranking 384 rainfall collection sub-catchments as regards installation of RWH sites for crop irrigation and forest fire combat. The practice of RWH at the catchment scale is frequently concerned with ecological sustainability values, namely through the aesthetic landscape enhancement. To naturally cope with these values, RWH infrastructure (dam wall) heights must not exceed ≈3 m. The results showed that more engineered dams may not always ensure all sustainability values but warrant much better storage. The limiting parameter was the dam wall height, because 217 sub-catchments were found to drain enough water for irrigation and capable to store it if proper dam wall heights were used. Chapter 4 argue about flood risk attenuation in critical zones of continental Portugal using sustainable detention basins. Within the framework of Directive 60/2007/EC (Floods Directive), Flood Risk Management Plans were developed for 23 critical flood risk zones identified in Portugal, capable to eliminate the high and very high flood risk areas instead of attempting to ensure full control of the flood in all potentially threatened areas. The results showed that the number of sustainable detention basins is reduced by about 30% when the full flood control model is used. Although the results indicate the possibility of installing more unsustainable than sustainable detention basins, in all critical areas, only three do not provide sustainable solutions. Therefore, in these critical areasthe construction of highly designed structures would be mandatory. “Can Land Cover Changes Mitigate Large Floods? A Reflection Based on Partial Least Squares-Path Modeling” was a question we tried to answer in Chapter 5. The aim was to verify, using a Partial least Squares-Path Model (PLS-PM), if changes in specific catchment variables, such as forest occupation or imperviousness of urban areas, would result in lower dam heights. In some realistic scenarios, the forecasted changes comprised 30% increase in forest areas or 30% decrease in impervious urban areas. Other purely academic scenarios were also tested, comprehending, for example, the duplication of forest areas or the reduction of catchment slope. In all cases, however, the dam wall heights did not fall significantly and remained very high. Therefore, the answer to the initial question is that non-structural measures may not always be an efficient way to reduce stream flows in a manner that flood detention can be achieved through construction of sustainable dam structures. Finally, in Chapter 6, the general conclusions and future perspectives were presented.
publishDate 2020
dc.date.none.fl_str_mv 2020-10-23T15:51:08Z
2020-01-10T00:00:00Z
2020-01-10
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10348/10214
url http://hdl.handle.net/10348/10214
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137111360667648