Identifying the main predictors of length of care in social care in Portugal
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://scielo.pt/scielo.php?script=sci_arttext&pid=S2504-31452021000100021 |
Resumo: | Abstract In this paper, we aim to identify the main predictors at admission and estimate patients’ length of care (LOC), within the framework of the Portuguese National Network for Long-Term Integrated Care, considering two care settings: (1) home and community-based services (HCBS) and (2) nursing home (NH) units comprising Short, Medium, or Long Stay Care. This study relied on a database of 20,984 Portuguese individuals who were admitted to the official long-term care (LTC) system and discharged during 2015. A generalised linear model (GLM) with gamma distribution was adjusted to HCBS and NH populations. Two sets of explanatory variables were used to model the random variable, LOC, namely, patient characteristics (age, gender, family/neighbour support, dependency levels at admission for locomotion, cognitive status, and activities of daily living [ADL]) and external factors (referral entity, number of beds/treatment places per 1,000 inhabitants ≥65 years of age), maturity and occupancy rate of the institution, and care setting. The features found to most influence the reduction of LOC are: male gender, having family/neighbour support, being referred by hospitals to NH (or by primary care to HCBS), and being admitted to units with a lower occupancy rate and with fewer months in operation. Regarding the dependency levels, as the number of ADL considered “dependent” increases, LOC also increases. As for the cognitive status, despite the opposite trend, it was only statistically significant for NH. Furthermore, two additional models were applied by including “death,” although this feature is not observable upon admission. By creating a model that allows for an estimate of the expected LOC for a new individual entering the Portuguese LTC system, policy-makers are able to estimate future costs and optimise resources. |
id |
RCAP_959341210a54f4eccfc6be2d12adb198 |
---|---|
oai_identifier_str |
oai:scielo:S2504-31452021000100021 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Identifying the main predictors of length of care in social care in PortugalLong-term careLength of careDependency levelsNursing homesHome and community-based servicesPortugalAbstract In this paper, we aim to identify the main predictors at admission and estimate patients’ length of care (LOC), within the framework of the Portuguese National Network for Long-Term Integrated Care, considering two care settings: (1) home and community-based services (HCBS) and (2) nursing home (NH) units comprising Short, Medium, or Long Stay Care. This study relied on a database of 20,984 Portuguese individuals who were admitted to the official long-term care (LTC) system and discharged during 2015. A generalised linear model (GLM) with gamma distribution was adjusted to HCBS and NH populations. Two sets of explanatory variables were used to model the random variable, LOC, namely, patient characteristics (age, gender, family/neighbour support, dependency levels at admission for locomotion, cognitive status, and activities of daily living [ADL]) and external factors (referral entity, number of beds/treatment places per 1,000 inhabitants ≥65 years of age), maturity and occupancy rate of the institution, and care setting. The features found to most influence the reduction of LOC are: male gender, having family/neighbour support, being referred by hospitals to NH (or by primary care to HCBS), and being admitted to units with a lower occupancy rate and with fewer months in operation. Regarding the dependency levels, as the number of ADL considered “dependent” increases, LOC also increases. As for the cognitive status, despite the opposite trend, it was only statistically significant for NH. Furthermore, two additional models were applied by including “death,” although this feature is not observable upon admission. By creating a model that allows for an estimate of the expected LOC for a new individual entering the Portuguese LTC system, policy-makers are able to estimate future costs and optimise resources.Escola Nacional de Saúde Pública2021-04-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articletext/htmlhttp://scielo.pt/scielo.php?script=sci_arttext&pid=S2504-31452021000100021Portuguese Journal of Public Health v.39 n.1 2021reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAPenghttp://scielo.pt/scielo.php?script=sci_arttext&pid=S2504-31452021000100021Lopes,HugoGuerreiro,GracindaEsquível,ManuelMateus,Céuinfo:eu-repo/semantics/openAccess2024-02-06T17:34:33Zoai:scielo:S2504-31452021000100021Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T02:36:28.578126Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Identifying the main predictors of length of care in social care in Portugal |
title |
Identifying the main predictors of length of care in social care in Portugal |
spellingShingle |
Identifying the main predictors of length of care in social care in Portugal Lopes,Hugo Long-term care Length of care Dependency levels Nursing homes Home and community-based services Portugal |
title_short |
Identifying the main predictors of length of care in social care in Portugal |
title_full |
Identifying the main predictors of length of care in social care in Portugal |
title_fullStr |
Identifying the main predictors of length of care in social care in Portugal |
title_full_unstemmed |
Identifying the main predictors of length of care in social care in Portugal |
title_sort |
Identifying the main predictors of length of care in social care in Portugal |
author |
Lopes,Hugo |
author_facet |
Lopes,Hugo Guerreiro,Gracinda Esquível,Manuel Mateus,Céu |
author_role |
author |
author2 |
Guerreiro,Gracinda Esquível,Manuel Mateus,Céu |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Lopes,Hugo Guerreiro,Gracinda Esquível,Manuel Mateus,Céu |
dc.subject.por.fl_str_mv |
Long-term care Length of care Dependency levels Nursing homes Home and community-based services Portugal |
topic |
Long-term care Length of care Dependency levels Nursing homes Home and community-based services Portugal |
description |
Abstract In this paper, we aim to identify the main predictors at admission and estimate patients’ length of care (LOC), within the framework of the Portuguese National Network for Long-Term Integrated Care, considering two care settings: (1) home and community-based services (HCBS) and (2) nursing home (NH) units comprising Short, Medium, or Long Stay Care. This study relied on a database of 20,984 Portuguese individuals who were admitted to the official long-term care (LTC) system and discharged during 2015. A generalised linear model (GLM) with gamma distribution was adjusted to HCBS and NH populations. Two sets of explanatory variables were used to model the random variable, LOC, namely, patient characteristics (age, gender, family/neighbour support, dependency levels at admission for locomotion, cognitive status, and activities of daily living [ADL]) and external factors (referral entity, number of beds/treatment places per 1,000 inhabitants ≥65 years of age), maturity and occupancy rate of the institution, and care setting. The features found to most influence the reduction of LOC are: male gender, having family/neighbour support, being referred by hospitals to NH (or by primary care to HCBS), and being admitted to units with a lower occupancy rate and with fewer months in operation. Regarding the dependency levels, as the number of ADL considered “dependent” increases, LOC also increases. As for the cognitive status, despite the opposite trend, it was only statistically significant for NH. Furthermore, two additional models were applied by including “death,” although this feature is not observable upon admission. By creating a model that allows for an estimate of the expected LOC for a new individual entering the Portuguese LTC system, policy-makers are able to estimate future costs and optimise resources. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-04-01 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://scielo.pt/scielo.php?script=sci_arttext&pid=S2504-31452021000100021 |
url |
http://scielo.pt/scielo.php?script=sci_arttext&pid=S2504-31452021000100021 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
http://scielo.pt/scielo.php?script=sci_arttext&pid=S2504-31452021000100021 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Escola Nacional de Saúde Pública |
publisher.none.fl_str_mv |
Escola Nacional de Saúde Pública |
dc.source.none.fl_str_mv |
Portuguese Journal of Public Health v.39 n.1 2021 reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799137416116699136 |