Effect of the interaction between elevated carbon dioxide and iron limitation on proteomic profiling of soybean

Detalhes bibliográficos
Autor(a) principal: Soares, José C.
Data de Publicação: 2022
Outros Autores: Osório, Hugo, Pintado, Manuela, Vasconcelos, Marta W.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10400.14/39395
Resumo: Elevated atmospheric CO2 (eCO2) and iron (Fe) availability are important factors affecting plant growth that may impact the proteomic profile of crop plants. In this study, soybean plants treated under Fe-limited (0.5 mM) and Fe-sufficient (20 mM) conditions were grown at ambient (400 μmol mol−1) and eCO2 (800 μmol mol−1) in hydroponic solutions. Elevated CO2 increased biomass from 2.14 to 3.14 g plant−1 and from 1.18 to 2.91 g plant−1 under Fe-sufficient and Fe-limited conditions, respectively, but did not affect leaf photosynthesis. Sugar concentration increased from 10.92 to 26.17 μmol g FW−1 in roots of Fe-sufficient plants and from 8.75 to 19.89 μmol g FW−1 of Fe-limited plants after exposure to eCO2. In leaves, sugar concentration increased from 33.62 to 52.22 μmol g FW−1 and from 34.80 to 46.70 μmol g FW−1 in Fe-sufficient and Fe-limited conditions, respectively, under eCO2. However, Fe-limitation decreases photosynthesis and biomass. Pathway enrichment analysis showed that cell wall organization, glutathione metabolism, photosynthesis, stress-related proteins, and biosynthesis of secondary compounds changed in root tissues to cope with Fe-stress. Moreover, under eCO2, at sufficient or limited Fe supply, it was shown an increase in the abundance of proteins involved in glycolysis, starch and sucrose metabolism, biosynthesis of plant hormones gibberellins, and decreased levels of protein biosynthesis. Our results revealed that proteins and metabolic pathways related to Fe-limitation changed the effects of eCO2 and negatively impacted soybean production.
id RCAP_95a5351c0f051900f7c1635a8eadccda
oai_identifier_str oai:repositorio.ucp.pt:10400.14/39395
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Effect of the interaction between elevated carbon dioxide and iron limitation on proteomic profiling of soybeanElevated CO2Iron limitationProteomic profilingSoybeanElevated atmospheric CO2 (eCO2) and iron (Fe) availability are important factors affecting plant growth that may impact the proteomic profile of crop plants. In this study, soybean plants treated under Fe-limited (0.5 mM) and Fe-sufficient (20 mM) conditions were grown at ambient (400 μmol mol−1) and eCO2 (800 μmol mol−1) in hydroponic solutions. Elevated CO2 increased biomass from 2.14 to 3.14 g plant−1 and from 1.18 to 2.91 g plant−1 under Fe-sufficient and Fe-limited conditions, respectively, but did not affect leaf photosynthesis. Sugar concentration increased from 10.92 to 26.17 μmol g FW−1 in roots of Fe-sufficient plants and from 8.75 to 19.89 μmol g FW−1 of Fe-limited plants after exposure to eCO2. In leaves, sugar concentration increased from 33.62 to 52.22 μmol g FW−1 and from 34.80 to 46.70 μmol g FW−1 in Fe-sufficient and Fe-limited conditions, respectively, under eCO2. However, Fe-limitation decreases photosynthesis and biomass. Pathway enrichment analysis showed that cell wall organization, glutathione metabolism, photosynthesis, stress-related proteins, and biosynthesis of secondary compounds changed in root tissues to cope with Fe-stress. Moreover, under eCO2, at sufficient or limited Fe supply, it was shown an increase in the abundance of proteins involved in glycolysis, starch and sucrose metabolism, biosynthesis of plant hormones gibberellins, and decreased levels of protein biosynthesis. Our results revealed that proteins and metabolic pathways related to Fe-limitation changed the effects of eCO2 and negatively impacted soybean production.Veritati - Repositório Institucional da Universidade Católica PortuguesaSoares, José C.Osório, HugoPintado, ManuelaVasconcelos, Marta W.2022-11-24T16:37:18Z2022-11-072022-11-07T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.14/39395eng1661-659610.3390/ijms23211363285141625737PMC965490436362418000883508800001info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-01-09T01:36:28Zoai:repositorio.ucp.pt:10400.14/39395Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T18:32:14.660946Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Effect of the interaction between elevated carbon dioxide and iron limitation on proteomic profiling of soybean
title Effect of the interaction between elevated carbon dioxide and iron limitation on proteomic profiling of soybean
spellingShingle Effect of the interaction between elevated carbon dioxide and iron limitation on proteomic profiling of soybean
Soares, José C.
Elevated CO2
Iron limitation
Proteomic profiling
Soybean
title_short Effect of the interaction between elevated carbon dioxide and iron limitation on proteomic profiling of soybean
title_full Effect of the interaction between elevated carbon dioxide and iron limitation on proteomic profiling of soybean
title_fullStr Effect of the interaction between elevated carbon dioxide and iron limitation on proteomic profiling of soybean
title_full_unstemmed Effect of the interaction between elevated carbon dioxide and iron limitation on proteomic profiling of soybean
title_sort Effect of the interaction between elevated carbon dioxide and iron limitation on proteomic profiling of soybean
author Soares, José C.
author_facet Soares, José C.
Osório, Hugo
Pintado, Manuela
Vasconcelos, Marta W.
author_role author
author2 Osório, Hugo
Pintado, Manuela
Vasconcelos, Marta W.
author2_role author
author
author
dc.contributor.none.fl_str_mv Veritati - Repositório Institucional da Universidade Católica Portuguesa
dc.contributor.author.fl_str_mv Soares, José C.
Osório, Hugo
Pintado, Manuela
Vasconcelos, Marta W.
dc.subject.por.fl_str_mv Elevated CO2
Iron limitation
Proteomic profiling
Soybean
topic Elevated CO2
Iron limitation
Proteomic profiling
Soybean
description Elevated atmospheric CO2 (eCO2) and iron (Fe) availability are important factors affecting plant growth that may impact the proteomic profile of crop plants. In this study, soybean plants treated under Fe-limited (0.5 mM) and Fe-sufficient (20 mM) conditions were grown at ambient (400 μmol mol−1) and eCO2 (800 μmol mol−1) in hydroponic solutions. Elevated CO2 increased biomass from 2.14 to 3.14 g plant−1 and from 1.18 to 2.91 g plant−1 under Fe-sufficient and Fe-limited conditions, respectively, but did not affect leaf photosynthesis. Sugar concentration increased from 10.92 to 26.17 μmol g FW−1 in roots of Fe-sufficient plants and from 8.75 to 19.89 μmol g FW−1 of Fe-limited plants after exposure to eCO2. In leaves, sugar concentration increased from 33.62 to 52.22 μmol g FW−1 and from 34.80 to 46.70 μmol g FW−1 in Fe-sufficient and Fe-limited conditions, respectively, under eCO2. However, Fe-limitation decreases photosynthesis and biomass. Pathway enrichment analysis showed that cell wall organization, glutathione metabolism, photosynthesis, stress-related proteins, and biosynthesis of secondary compounds changed in root tissues to cope with Fe-stress. Moreover, under eCO2, at sufficient or limited Fe supply, it was shown an increase in the abundance of proteins involved in glycolysis, starch and sucrose metabolism, biosynthesis of plant hormones gibberellins, and decreased levels of protein biosynthesis. Our results revealed that proteins and metabolic pathways related to Fe-limitation changed the effects of eCO2 and negatively impacted soybean production.
publishDate 2022
dc.date.none.fl_str_mv 2022-11-24T16:37:18Z
2022-11-07
2022-11-07T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.14/39395
url http://hdl.handle.net/10400.14/39395
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 1661-6596
10.3390/ijms232113632
85141625737
PMC9654904
36362418
000883508800001
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799132046367391744