Energy and pressure versus volume: Equations of state motivated by the stabilized jellium model
Autor(a) principal: | |
---|---|
Data de Publicação: | 2001 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10316/12337 |
Resumo: | Explicit functions are widely used to interpolate, extrapolate, and differentiate theoretical or experimental data on the equation of state (EOS) of a solid. We present two EOS functions which are theoretically motivated. The simplest realistic model for a simple metal, the stabilized jellium (SJ) or structureless pseudopotential model, is the paradigm for our SJEOS. A simple metal with exponentially overlapped ion cores is the paradigm for an augmented version (ASJEOS) of the SJEOS. For the three solids tested (Al, Li, Mo), the ASJEOS matches all-electron calculations better than prior equations of state. Like most of the prior EOS’s, the ASJEOS predicts pressure P as a function of compressed volume v from only a few equilibrium inputs: the volume v0, the bulk modulus B0, and its pressure derivative B1. Under expansion, the cohesive energy serves as another input. A further advantage of the new equation of state is that these equilibrium properties other than v0 may be found by linear fitting methods. The SJEOS can be used to correct B0 and the EOS found from an approximate density functional, if the corresponding error in v0 is known. We also (a) estimate the typically small contribution of phonon zero-point vibration to the EOS, (b) find that the physical hardness Bv does not maximize at equilibrium, and (c) show that the “ideal metal” of Shore and Rose is the zero-valence limit of stabilized jellium |
id |
RCAP_9611e6b8df332bc30d520e443d5ba925 |
---|---|
oai_identifier_str |
oai:estudogeral.uc.pt:10316/12337 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Energy and pressure versus volume: Equations of state motivated by the stabilized jellium modelExplicit functions are widely used to interpolate, extrapolate, and differentiate theoretical or experimental data on the equation of state (EOS) of a solid. We present two EOS functions which are theoretically motivated. The simplest realistic model for a simple metal, the stabilized jellium (SJ) or structureless pseudopotential model, is the paradigm for our SJEOS. A simple metal with exponentially overlapped ion cores is the paradigm for an augmented version (ASJEOS) of the SJEOS. For the three solids tested (Al, Li, Mo), the ASJEOS matches all-electron calculations better than prior equations of state. Like most of the prior EOS’s, the ASJEOS predicts pressure P as a function of compressed volume v from only a few equilibrium inputs: the volume v0, the bulk modulus B0, and its pressure derivative B1. Under expansion, the cohesive energy serves as another input. A further advantage of the new equation of state is that these equilibrium properties other than v0 may be found by linear fitting methods. The SJEOS can be used to correct B0 and the EOS found from an approximate density functional, if the corresponding error in v0 is known. We also (a) estimate the typically small contribution of phonon zero-point vibration to the EOS, (b) find that the physical hardness Bv does not maximize at equilibrium, and (c) show that the “ideal metal” of Shore and Rose is the zero-valence limit of stabilized jelliumThe American Physical Society2001info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10316/12337http://hdl.handle.net/10316/12337engPhysical Review B. 63:22 (2001) 2241150163-1829Alchagirov, Alim B.Perdew, John P.Boettger, Jonathan C.Albers, R. C.Fiolhais, Carlosinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2020-05-25T12:49:59Zoai:estudogeral.uc.pt:10316/12337Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T20:59:53.257854Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Energy and pressure versus volume: Equations of state motivated by the stabilized jellium model |
title |
Energy and pressure versus volume: Equations of state motivated by the stabilized jellium model |
spellingShingle |
Energy and pressure versus volume: Equations of state motivated by the stabilized jellium model Alchagirov, Alim B. |
title_short |
Energy and pressure versus volume: Equations of state motivated by the stabilized jellium model |
title_full |
Energy and pressure versus volume: Equations of state motivated by the stabilized jellium model |
title_fullStr |
Energy and pressure versus volume: Equations of state motivated by the stabilized jellium model |
title_full_unstemmed |
Energy and pressure versus volume: Equations of state motivated by the stabilized jellium model |
title_sort |
Energy and pressure versus volume: Equations of state motivated by the stabilized jellium model |
author |
Alchagirov, Alim B. |
author_facet |
Alchagirov, Alim B. Perdew, John P. Boettger, Jonathan C. Albers, R. C. Fiolhais, Carlos |
author_role |
author |
author2 |
Perdew, John P. Boettger, Jonathan C. Albers, R. C. Fiolhais, Carlos |
author2_role |
author author author author |
dc.contributor.author.fl_str_mv |
Alchagirov, Alim B. Perdew, John P. Boettger, Jonathan C. Albers, R. C. Fiolhais, Carlos |
description |
Explicit functions are widely used to interpolate, extrapolate, and differentiate theoretical or experimental data on the equation of state (EOS) of a solid. We present two EOS functions which are theoretically motivated. The simplest realistic model for a simple metal, the stabilized jellium (SJ) or structureless pseudopotential model, is the paradigm for our SJEOS. A simple metal with exponentially overlapped ion cores is the paradigm for an augmented version (ASJEOS) of the SJEOS. For the three solids tested (Al, Li, Mo), the ASJEOS matches all-electron calculations better than prior equations of state. Like most of the prior EOS’s, the ASJEOS predicts pressure P as a function of compressed volume v from only a few equilibrium inputs: the volume v0, the bulk modulus B0, and its pressure derivative B1. Under expansion, the cohesive energy serves as another input. A further advantage of the new equation of state is that these equilibrium properties other than v0 may be found by linear fitting methods. The SJEOS can be used to correct B0 and the EOS found from an approximate density functional, if the corresponding error in v0 is known. We also (a) estimate the typically small contribution of phonon zero-point vibration to the EOS, (b) find that the physical hardness Bv does not maximize at equilibrium, and (c) show that the “ideal metal” of Shore and Rose is the zero-valence limit of stabilized jellium |
publishDate |
2001 |
dc.date.none.fl_str_mv |
2001 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10316/12337 http://hdl.handle.net/10316/12337 |
url |
http://hdl.handle.net/10316/12337 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Physical Review B. 63:22 (2001) 224115 0163-1829 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
The American Physical Society |
publisher.none.fl_str_mv |
The American Physical Society |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799133889026850816 |