Modelling the occurrence of Physalia physalis in the North Atlantic Ocean at different spatial and temporal scales
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10400.1/19365 |
Resumo: | Frequent jellyfish blooms cause human health issues and closures of coastal areas, impacting different economic sectors like tourism, fisheries, aquaculture farms and industry. Understanding the drivers of jellyfish bloom and predicting their occurrence is therefore essential to develop effective management plans. The Portuguese Man-of-War (Physalia physalis) is a dangerous cosmopolitan siphonophore and its ecology remains largely understudied. The objective of this study is to understand the main environmental drivers (e.g., temperature, productivity, wind and ocean patterns) that explain the occurrence of P. physalis at a macroecological scale (the North Atlantic Ocean) and at a regional scale (Faial Island from the Azores archipelago), and to predict its distribution and temporal trends. We implemented machine learning modelling that fed on high-resolution environmental data and occurrence data describing its distribution in the North Atlantic Ocean and long-term temporal variability in the Faial Island (Azores). Models retrieved high accuracy scores and showed that the distribution of P. physalis is mainly explained by primary productivity, temperature and currents direction at the macroecological scale and by primary productivity and wind patterns at the regional scale. The models also showed a higher probability of occurrence on both Atlantic coasts and offshore North-northwest Atlantic. Models fed on temporal datasets demonstrate decadal fluctuations rather than significant increases over time, contradicting the previously established hypothesis that jellyfish blooms are increasing. By using species distribution modelling, we provide a better understanding on how environmental variability shapes the occurrence of P. physalis at different spatial and temporal scales (macroecological and regional), which can be considered in management plans and policies. In the future, projected global warming and decreased primary productivity in the North Atlantic may cause significant poleward shifting of this species, adversely affecting human health, socioeconomics and ecosystems in regions not currently used to deal with such impacts. |
id |
RCAP_969c5128181104ef68a123b78b2f7c31 |
---|---|
oai_identifier_str |
oai:sapientia.ualg.pt:10400.1/19365 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Modelling the occurrence of Physalia physalis in the North Atlantic Ocean at different spatial and temporal scalesPhysalia physalisSpecies distribution modellingClimate changeJellyfish bloomsDriversDomínio/Área Científica::Ciências Naturais::Outras Ciências NaturaisFrequent jellyfish blooms cause human health issues and closures of coastal areas, impacting different economic sectors like tourism, fisheries, aquaculture farms and industry. Understanding the drivers of jellyfish bloom and predicting their occurrence is therefore essential to develop effective management plans. The Portuguese Man-of-War (Physalia physalis) is a dangerous cosmopolitan siphonophore and its ecology remains largely understudied. The objective of this study is to understand the main environmental drivers (e.g., temperature, productivity, wind and ocean patterns) that explain the occurrence of P. physalis at a macroecological scale (the North Atlantic Ocean) and at a regional scale (Faial Island from the Azores archipelago), and to predict its distribution and temporal trends. We implemented machine learning modelling that fed on high-resolution environmental data and occurrence data describing its distribution in the North Atlantic Ocean and long-term temporal variability in the Faial Island (Azores). Models retrieved high accuracy scores and showed that the distribution of P. physalis is mainly explained by primary productivity, temperature and currents direction at the macroecological scale and by primary productivity and wind patterns at the regional scale. The models also showed a higher probability of occurrence on both Atlantic coasts and offshore North-northwest Atlantic. Models fed on temporal datasets demonstrate decadal fluctuations rather than significant increases over time, contradicting the previously established hypothesis that jellyfish blooms are increasing. By using species distribution modelling, we provide a better understanding on how environmental variability shapes the occurrence of P. physalis at different spatial and temporal scales (macroecological and regional), which can be considered in management plans and policies. In the future, projected global warming and decreased primary productivity in the North Atlantic may cause significant poleward shifting of this species, adversely affecting human health, socioeconomics and ecosystems in regions not currently used to deal with such impacts.Os frequentes blooms de medusas causam problemas de saúde humana e encerramentos de zonas costeiras, que têm impactos em diferentes sectores económicos como o turismo, pescas, explorações aquícolas e indústria. Compreender quais os factores ambientais que levam aos blooms de medusas e prever a sua ocorrência é, portanto, essencial para desenvolver planos de gestão eficazes. A caravela portuguesa (Physalia physalis) é um perigoso sifonóforo cosmopolita com um pneumatóforo flutuante e longos tentáculos com células urticantes cuja ecologia permanece pouco estudada. O objetivo deste estudo é compreender os principais fatores ambientais (por exemplo, temperatura, produtividade, vento e padrões oceânicos) que explicam a ocorrência da P. physalis à escala macroecológica (o Oceano Atlântico Norte) e à escala regional (Ilha do Faial do arquipélago dos Açores), e prever a sua distribuição e tendências temporais. Implementámos modelos de machine learning que se alimentam de dados ambientais de alta resolução e dados de ocorrência descrevendo a sua distribuição no Oceano Atlântico Norte e a variabilidade temporal a longo prazo na Ilha do Faial (Açores). Os modelos de alta precisão e mostraram que a distribuição de P. physalis é principalmente explicada pela produtividade primária, temperatura e direção das correntes à escala macroecológica e pela produtividade primária e padrões de vento à escala regional. Os modelos também mostraram uma maior probabilidade de ocorrência da espécie na costa e região Norte-noroeste do Atlântico Norte. Os modelos alimentados com conjuntos de dados temporais demonstram flutuações decadais em vez de aumentos significativos ao longo do tempo, contradizendo a hipótese previamente estabelecida de que os blooms de medusas estão a aumentar. Ao modelar a distribuição da espécie, fornecemos uma melhor compreensão de como a variabilidade ambiental molda a ocorrência de P. physalis em diferentes escalas espaciais e temporais (macroecológicas e regionais), o que pode ser considerado em planos e políticas de gestão. No futuro, o aquecimento global projetado e a diminuição da produtividade primária no Atlântico Norte podem causar deslocamentos significativos desta espécie em direção ao pólo, afetando negativamente a saúde humana, a socioeconómica e os ecossistemas em regiões que atualmente não estão habituadas a lidar com tais impactos.Assis, JorgeGomes-Pereira, José NunoSapientiaMartins, Lara Colaço2023-03-31T09:33:36Z2022-12-022022-12-02T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10400.1/19365TID:203263979enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-24T10:31:49Zoai:sapientia.ualg.pt:10400.1/19365Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T20:09:01.313174Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Modelling the occurrence of Physalia physalis in the North Atlantic Ocean at different spatial and temporal scales |
title |
Modelling the occurrence of Physalia physalis in the North Atlantic Ocean at different spatial and temporal scales |
spellingShingle |
Modelling the occurrence of Physalia physalis in the North Atlantic Ocean at different spatial and temporal scales Martins, Lara Colaço Physalia physalis Species distribution modelling Climate change Jellyfish blooms Drivers Domínio/Área Científica::Ciências Naturais::Outras Ciências Naturais |
title_short |
Modelling the occurrence of Physalia physalis in the North Atlantic Ocean at different spatial and temporal scales |
title_full |
Modelling the occurrence of Physalia physalis in the North Atlantic Ocean at different spatial and temporal scales |
title_fullStr |
Modelling the occurrence of Physalia physalis in the North Atlantic Ocean at different spatial and temporal scales |
title_full_unstemmed |
Modelling the occurrence of Physalia physalis in the North Atlantic Ocean at different spatial and temporal scales |
title_sort |
Modelling the occurrence of Physalia physalis in the North Atlantic Ocean at different spatial and temporal scales |
author |
Martins, Lara Colaço |
author_facet |
Martins, Lara Colaço |
author_role |
author |
dc.contributor.none.fl_str_mv |
Assis, Jorge Gomes-Pereira, José Nuno Sapientia |
dc.contributor.author.fl_str_mv |
Martins, Lara Colaço |
dc.subject.por.fl_str_mv |
Physalia physalis Species distribution modelling Climate change Jellyfish blooms Drivers Domínio/Área Científica::Ciências Naturais::Outras Ciências Naturais |
topic |
Physalia physalis Species distribution modelling Climate change Jellyfish blooms Drivers Domínio/Área Científica::Ciências Naturais::Outras Ciências Naturais |
description |
Frequent jellyfish blooms cause human health issues and closures of coastal areas, impacting different economic sectors like tourism, fisheries, aquaculture farms and industry. Understanding the drivers of jellyfish bloom and predicting their occurrence is therefore essential to develop effective management plans. The Portuguese Man-of-War (Physalia physalis) is a dangerous cosmopolitan siphonophore and its ecology remains largely understudied. The objective of this study is to understand the main environmental drivers (e.g., temperature, productivity, wind and ocean patterns) that explain the occurrence of P. physalis at a macroecological scale (the North Atlantic Ocean) and at a regional scale (Faial Island from the Azores archipelago), and to predict its distribution and temporal trends. We implemented machine learning modelling that fed on high-resolution environmental data and occurrence data describing its distribution in the North Atlantic Ocean and long-term temporal variability in the Faial Island (Azores). Models retrieved high accuracy scores and showed that the distribution of P. physalis is mainly explained by primary productivity, temperature and currents direction at the macroecological scale and by primary productivity and wind patterns at the regional scale. The models also showed a higher probability of occurrence on both Atlantic coasts and offshore North-northwest Atlantic. Models fed on temporal datasets demonstrate decadal fluctuations rather than significant increases over time, contradicting the previously established hypothesis that jellyfish blooms are increasing. By using species distribution modelling, we provide a better understanding on how environmental variability shapes the occurrence of P. physalis at different spatial and temporal scales (macroecological and regional), which can be considered in management plans and policies. In the future, projected global warming and decreased primary productivity in the North Atlantic may cause significant poleward shifting of this species, adversely affecting human health, socioeconomics and ecosystems in regions not currently used to deal with such impacts. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-12-02 2022-12-02T00:00:00Z 2023-03-31T09:33:36Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.1/19365 TID:203263979 |
url |
http://hdl.handle.net/10400.1/19365 |
identifier_str_mv |
TID:203263979 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799133337214779392 |