PORT Hill and Moment Estimators for Heavy-Tailed Models
Autor(a) principal: | |
---|---|
Data de Publicação: | 2008 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10400.15/2992 |
Resumo: | In this article, we use the peaks over random threshold (PORT)-methodology, and consider Hill and moment PORT-classes of extreme value index estimators. These classes of estimators are invariant not only to changes in scale, like the classical Hill and moment estimators, but also to changes in location. They are based on the sample of excesses over a random threshold, the order statistic X[np]+1:n, 0 ≤ p < 1, being p a tuning parameter, which makes them highly flexible. Under convenient restrictions on the underlying model, these classes of estimators are consistent and asymptotically normal for adequate values of k, the number of top order statistics used in the semi-parametric estimation of the extreme value index γ. In practice, there may however appear a stability around a value distant from the target γ when the minimum is chosen for the random threshold, and attention is drawn for the danger of transforming the original data through the subtraction of the minimum. A new bias-corrected moment estimator is also introduced. The exact performance of the new extreme value index PORT-estimators is compared, through a large-scale Monte-Carlo simulation study, with the original Hill and moment estimators, the bias-corrected moment estimator, and one of the minimum-variance reduced-bias (MVRB) extreme value index estimators recently introduced in the literature. As an empirical example we estimate the tail index associated to a set of real data from the field of finance. |
id |
RCAP_96db441888ea73e63a239006d99428b4 |
---|---|
oai_identifier_str |
oai:repositorio.ipsantarem.pt:10400.15/2992 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
PORT Hill and Moment Estimators for Heavy-Tailed ModelsExtreme value indexMonte Carlo simulationReduced-bias estimationSample of excessesSemi-parametric estimationStatistics of extremesStatistics of extremesIn this article, we use the peaks over random threshold (PORT)-methodology, and consider Hill and moment PORT-classes of extreme value index estimators. These classes of estimators are invariant not only to changes in scale, like the classical Hill and moment estimators, but also to changes in location. They are based on the sample of excesses over a random threshold, the order statistic X[np]+1:n, 0 ≤ p < 1, being p a tuning parameter, which makes them highly flexible. Under convenient restrictions on the underlying model, these classes of estimators are consistent and asymptotically normal for adequate values of k, the number of top order statistics used in the semi-parametric estimation of the extreme value index γ. In practice, there may however appear a stability around a value distant from the target γ when the minimum is chosen for the random threshold, and attention is drawn for the danger of transforming the original data through the subtraction of the minimum. A new bias-corrected moment estimator is also introduced. The exact performance of the new extreme value index PORT-estimators is compared, through a large-scale Monte-Carlo simulation study, with the original Hill and moment estimators, the bias-corrected moment estimator, and one of the minimum-variance reduced-bias (MVRB) extreme value index estimators recently introduced in the literature. As an empirical example we estimate the tail index associated to a set of real data from the field of finance.Taylor & FrancisRepositório Científico do Instituto Politécnico de SantarémGomes, M. IvetteAlves, M. Isabel FragaSantos, Paulo Araújo2020-07-16T10:32:55Z20082008-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.15/2992engGomes, M. I., Alves, M. I., & Santos, P. (2008). PORT Hill and moment estimators for Heavy-Tailed Models. Communications in Statistics : Simulation & Computation, 37(7), 1281–1306. doi: 10.1080/036109108020509100361-091810.1080/03610910802050910metadata only accessinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-01-21T07:34:27Zoai:repositorio.ipsantarem.pt:10400.15/2992Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T01:54:51.629645Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
PORT Hill and Moment Estimators for Heavy-Tailed Models |
title |
PORT Hill and Moment Estimators for Heavy-Tailed Models |
spellingShingle |
PORT Hill and Moment Estimators for Heavy-Tailed Models Gomes, M. Ivette Extreme value index Monte Carlo simulation Reduced-bias estimation Sample of excesses Semi-parametric estimation Statistics of extremes Statistics of extremes |
title_short |
PORT Hill and Moment Estimators for Heavy-Tailed Models |
title_full |
PORT Hill and Moment Estimators for Heavy-Tailed Models |
title_fullStr |
PORT Hill and Moment Estimators for Heavy-Tailed Models |
title_full_unstemmed |
PORT Hill and Moment Estimators for Heavy-Tailed Models |
title_sort |
PORT Hill and Moment Estimators for Heavy-Tailed Models |
author |
Gomes, M. Ivette |
author_facet |
Gomes, M. Ivette Alves, M. Isabel Fraga Santos, Paulo Araújo |
author_role |
author |
author2 |
Alves, M. Isabel Fraga Santos, Paulo Araújo |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
Repositório Científico do Instituto Politécnico de Santarém |
dc.contributor.author.fl_str_mv |
Gomes, M. Ivette Alves, M. Isabel Fraga Santos, Paulo Araújo |
dc.subject.por.fl_str_mv |
Extreme value index Monte Carlo simulation Reduced-bias estimation Sample of excesses Semi-parametric estimation Statistics of extremes Statistics of extremes |
topic |
Extreme value index Monte Carlo simulation Reduced-bias estimation Sample of excesses Semi-parametric estimation Statistics of extremes Statistics of extremes |
description |
In this article, we use the peaks over random threshold (PORT)-methodology, and consider Hill and moment PORT-classes of extreme value index estimators. These classes of estimators are invariant not only to changes in scale, like the classical Hill and moment estimators, but also to changes in location. They are based on the sample of excesses over a random threshold, the order statistic X[np]+1:n, 0 ≤ p < 1, being p a tuning parameter, which makes them highly flexible. Under convenient restrictions on the underlying model, these classes of estimators are consistent and asymptotically normal for adequate values of k, the number of top order statistics used in the semi-parametric estimation of the extreme value index γ. In practice, there may however appear a stability around a value distant from the target γ when the minimum is chosen for the random threshold, and attention is drawn for the danger of transforming the original data through the subtraction of the minimum. A new bias-corrected moment estimator is also introduced. The exact performance of the new extreme value index PORT-estimators is compared, through a large-scale Monte-Carlo simulation study, with the original Hill and moment estimators, the bias-corrected moment estimator, and one of the minimum-variance reduced-bias (MVRB) extreme value index estimators recently introduced in the literature. As an empirical example we estimate the tail index associated to a set of real data from the field of finance. |
publishDate |
2008 |
dc.date.none.fl_str_mv |
2008 2008-01-01T00:00:00Z 2020-07-16T10:32:55Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.15/2992 |
url |
http://hdl.handle.net/10400.15/2992 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Gomes, M. I., Alves, M. I., & Santos, P. (2008). PORT Hill and moment estimators for Heavy-Tailed Models. Communications in Statistics : Simulation & Computation, 37(7), 1281–1306. doi: 10.1080/03610910802050910 0361-0918 10.1080/03610910802050910 |
dc.rights.driver.fl_str_mv |
metadata only access info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
metadata only access |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Taylor & Francis |
publisher.none.fl_str_mv |
Taylor & Francis |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799137038302183424 |