PORT Hill and Moment Estimators for Heavy-Tailed Models

Detalhes bibliográficos
Autor(a) principal: Gomes, M. Ivette
Data de Publicação: 2008
Outros Autores: Alves, M. Isabel Fraga, Santos, Paulo Araújo
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10400.15/2992
Resumo: In this article, we use the peaks over random threshold (PORT)-methodology, and consider Hill and moment PORT-classes of extreme value index estimators. These classes of estimators are invariant not only to changes in scale, like the classical Hill and moment estimators, but also to changes in location. They are based on the sample of excesses over a random threshold, the order statistic X[np]+1:n, 0 ≤ p < 1, being p a tuning parameter, which makes them highly flexible. Under convenient restrictions on the underlying model, these classes of estimators are consistent and asymptotically normal for adequate values of k, the number of top order statistics used in the semi-parametric estimation of the extreme value index γ. In practice, there may however appear a stability around a value distant from the target γ when the minimum is chosen for the random threshold, and attention is drawn for the danger of transforming the original data through the subtraction of the minimum. A new bias-corrected moment estimator is also introduced. The exact performance of the new extreme value index PORT-estimators is compared, through a large-scale Monte-Carlo simulation study, with the original Hill and moment estimators, the bias-corrected moment estimator, and one of the minimum-variance reduced-bias (MVRB) extreme value index estimators recently introduced in the literature. As an empirical example we estimate the tail index associated to a set of real data from the field of finance.
id RCAP_96db441888ea73e63a239006d99428b4
oai_identifier_str oai:repositorio.ipsantarem.pt:10400.15/2992
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling PORT Hill and Moment Estimators for Heavy-Tailed ModelsExtreme value indexMonte Carlo simulationReduced-bias estimationSample of excessesSemi-parametric estimationStatistics of extremesStatistics of extremesIn this article, we use the peaks over random threshold (PORT)-methodology, and consider Hill and moment PORT-classes of extreme value index estimators. These classes of estimators are invariant not only to changes in scale, like the classical Hill and moment estimators, but also to changes in location. They are based on the sample of excesses over a random threshold, the order statistic X[np]+1:n, 0 ≤ p < 1, being p a tuning parameter, which makes them highly flexible. Under convenient restrictions on the underlying model, these classes of estimators are consistent and asymptotically normal for adequate values of k, the number of top order statistics used in the semi-parametric estimation of the extreme value index γ. In practice, there may however appear a stability around a value distant from the target γ when the minimum is chosen for the random threshold, and attention is drawn for the danger of transforming the original data through the subtraction of the minimum. A new bias-corrected moment estimator is also introduced. The exact performance of the new extreme value index PORT-estimators is compared, through a large-scale Monte-Carlo simulation study, with the original Hill and moment estimators, the bias-corrected moment estimator, and one of the minimum-variance reduced-bias (MVRB) extreme value index estimators recently introduced in the literature. As an empirical example we estimate the tail index associated to a set of real data from the field of finance.Taylor & FrancisRepositório Científico do Instituto Politécnico de SantarémGomes, M. IvetteAlves, M. Isabel FragaSantos, Paulo Araújo2020-07-16T10:32:55Z20082008-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.15/2992engGomes, M. I., Alves, M. I., & Santos, P. (2008). PORT Hill and moment estimators for Heavy-Tailed Models. Communications in Statistics : Simulation & Computation, 37(7), 1281–1306. doi: 10.1080/036109108020509100361-091810.1080/03610910802050910metadata only accessinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-01-21T07:34:27Zoai:repositorio.ipsantarem.pt:10400.15/2992Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T01:54:51.629645Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv PORT Hill and Moment Estimators for Heavy-Tailed Models
title PORT Hill and Moment Estimators for Heavy-Tailed Models
spellingShingle PORT Hill and Moment Estimators for Heavy-Tailed Models
Gomes, M. Ivette
Extreme value index
Monte Carlo simulation
Reduced-bias estimation
Sample of excesses
Semi-parametric estimation
Statistics of extremes
Statistics of extremes
title_short PORT Hill and Moment Estimators for Heavy-Tailed Models
title_full PORT Hill and Moment Estimators for Heavy-Tailed Models
title_fullStr PORT Hill and Moment Estimators for Heavy-Tailed Models
title_full_unstemmed PORT Hill and Moment Estimators for Heavy-Tailed Models
title_sort PORT Hill and Moment Estimators for Heavy-Tailed Models
author Gomes, M. Ivette
author_facet Gomes, M. Ivette
Alves, M. Isabel Fraga
Santos, Paulo Araújo
author_role author
author2 Alves, M. Isabel Fraga
Santos, Paulo Araújo
author2_role author
author
dc.contributor.none.fl_str_mv Repositório Científico do Instituto Politécnico de Santarém
dc.contributor.author.fl_str_mv Gomes, M. Ivette
Alves, M. Isabel Fraga
Santos, Paulo Araújo
dc.subject.por.fl_str_mv Extreme value index
Monte Carlo simulation
Reduced-bias estimation
Sample of excesses
Semi-parametric estimation
Statistics of extremes
Statistics of extremes
topic Extreme value index
Monte Carlo simulation
Reduced-bias estimation
Sample of excesses
Semi-parametric estimation
Statistics of extremes
Statistics of extremes
description In this article, we use the peaks over random threshold (PORT)-methodology, and consider Hill and moment PORT-classes of extreme value index estimators. These classes of estimators are invariant not only to changes in scale, like the classical Hill and moment estimators, but also to changes in location. They are based on the sample of excesses over a random threshold, the order statistic X[np]+1:n, 0 ≤ p < 1, being p a tuning parameter, which makes them highly flexible. Under convenient restrictions on the underlying model, these classes of estimators are consistent and asymptotically normal for adequate values of k, the number of top order statistics used in the semi-parametric estimation of the extreme value index γ. In practice, there may however appear a stability around a value distant from the target γ when the minimum is chosen for the random threshold, and attention is drawn for the danger of transforming the original data through the subtraction of the minimum. A new bias-corrected moment estimator is also introduced. The exact performance of the new extreme value index PORT-estimators is compared, through a large-scale Monte-Carlo simulation study, with the original Hill and moment estimators, the bias-corrected moment estimator, and one of the minimum-variance reduced-bias (MVRB) extreme value index estimators recently introduced in the literature. As an empirical example we estimate the tail index associated to a set of real data from the field of finance.
publishDate 2008
dc.date.none.fl_str_mv 2008
2008-01-01T00:00:00Z
2020-07-16T10:32:55Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.15/2992
url http://hdl.handle.net/10400.15/2992
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Gomes, M. I., Alves, M. I., & Santos, P. (2008). PORT Hill and moment estimators for Heavy-Tailed Models. Communications in Statistics : Simulation & Computation, 37(7), 1281–1306. doi: 10.1080/03610910802050910
0361-0918
10.1080/03610910802050910
dc.rights.driver.fl_str_mv metadata only access
info:eu-repo/semantics/openAccess
rights_invalid_str_mv metadata only access
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Taylor & Francis
publisher.none.fl_str_mv Taylor & Francis
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137038302183424