Taylor’s formula for generalized weighted fractional derivatives with nonsingular kernels
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10773/34318 |
Resumo: | We prove a new Taylor’s theorem for generalized weighted fractional calculus with nonsingular kernels. The proof is based on the establishment of new relations for nth-weighted generalized fractional integrals and derivatives. As an application, new mean value theorems for generalized weighted fractional operators are obtained. Direct corollaries allow one to obtain the recent Taylor’s and mean value theorems for Caputo–Fabrizio, Atangana–Baleanu–Caputo (ABC) and weighted ABC derivatives. |
id |
RCAP_96e3b74095683ae550d4d741be0987f4 |
---|---|
oai_identifier_str |
oai:ria.ua.pt:10773/34318 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Taylor’s formula for generalized weighted fractional derivatives with nonsingular kernelsGeneralized weighted fractional derivativesNonsingular kernelsTaylor’s formulaMean value theoremsWe prove a new Taylor’s theorem for generalized weighted fractional calculus with nonsingular kernels. The proof is based on the establishment of new relations for nth-weighted generalized fractional integrals and derivatives. As an application, new mean value theorems for generalized weighted fractional operators are obtained. Direct corollaries allow one to obtain the recent Taylor’s and mean value theorems for Caputo–Fabrizio, Atangana–Baleanu–Caputo (ABC) and weighted ABC derivatives.MDPI2022-07-27T09:05:35Z2022-05-01T00:00:00Z2022-05info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/34318eng2075-168010.3390/axioms11050231Zine, HoussineLotfi, El MehdiTorres, Delfim F. M.Yousfi, Nourainfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T12:05:13Zoai:ria.ua.pt:10773/34318Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:05:13.785111Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Taylor’s formula for generalized weighted fractional derivatives with nonsingular kernels |
title |
Taylor’s formula for generalized weighted fractional derivatives with nonsingular kernels |
spellingShingle |
Taylor’s formula for generalized weighted fractional derivatives with nonsingular kernels Zine, Houssine Generalized weighted fractional derivatives Nonsingular kernels Taylor’s formula Mean value theorems |
title_short |
Taylor’s formula for generalized weighted fractional derivatives with nonsingular kernels |
title_full |
Taylor’s formula for generalized weighted fractional derivatives with nonsingular kernels |
title_fullStr |
Taylor’s formula for generalized weighted fractional derivatives with nonsingular kernels |
title_full_unstemmed |
Taylor’s formula for generalized weighted fractional derivatives with nonsingular kernels |
title_sort |
Taylor’s formula for generalized weighted fractional derivatives with nonsingular kernels |
author |
Zine, Houssine |
author_facet |
Zine, Houssine Lotfi, El Mehdi Torres, Delfim F. M. Yousfi, Noura |
author_role |
author |
author2 |
Lotfi, El Mehdi Torres, Delfim F. M. Yousfi, Noura |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Zine, Houssine Lotfi, El Mehdi Torres, Delfim F. M. Yousfi, Noura |
dc.subject.por.fl_str_mv |
Generalized weighted fractional derivatives Nonsingular kernels Taylor’s formula Mean value theorems |
topic |
Generalized weighted fractional derivatives Nonsingular kernels Taylor’s formula Mean value theorems |
description |
We prove a new Taylor’s theorem for generalized weighted fractional calculus with nonsingular kernels. The proof is based on the establishment of new relations for nth-weighted generalized fractional integrals and derivatives. As an application, new mean value theorems for generalized weighted fractional operators are obtained. Direct corollaries allow one to obtain the recent Taylor’s and mean value theorems for Caputo–Fabrizio, Atangana–Baleanu–Caputo (ABC) and weighted ABC derivatives. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-07-27T09:05:35Z 2022-05-01T00:00:00Z 2022-05 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10773/34318 |
url |
http://hdl.handle.net/10773/34318 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
2075-1680 10.3390/axioms11050231 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
MDPI |
publisher.none.fl_str_mv |
MDPI |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799137707188813824 |