New Optical Designs for Large Parabolic Troughs

Detalhes bibliográficos
Autor(a) principal: Canavarro, Diogo
Data de Publicação: 2014
Outros Autores: Chaves, Júlio, Collares-Pereira, Manuel
Tipo de documento: Artigo de conferência
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10174/31424
https://doi.org/10.1016/j.egypro.2014.03.137
Resumo: The potential for cost reduction in parabolic troughs (PT) large collector fields is real and will be achieved in a variety of different ways. One problem certainly contributing to the costs of Solar Thermal Electricity (STE) PT fields is certainly the fact that large fields have a significant quantity of receiver lines and pipes bringing the heat transfer fluid to and off from them. The very large pipe length in large collector fields (for instance the 50MW fields in Spain) is a source of heat losses and parasitic losses due to significant pumping power, but also a source of other costs related to the number of pumps, to the amount of (costly) circulating fluid etc. In any given large field, receiver length and pipe length are determined by the aperture size of the PTs and one way to reduce these impacts on cost would be to increase aperture size. This has been the idea behind developments like the Ultimate Trough. In this paper new optical solutions are presented to obtain much larger troughs, using the same “standard” evacuated 70 mm inner radius tube, which in fact amounts to a substantial increase of concentration, but without sacrificing the acceptance angle of the optic. The Simultaneous Multiple Surface (SMS) method is used and practical solutions are obtained for apertures nearly close to twice the present standard of ≈ 6m width. The case of troughs for fixed receiver tubes is also discussed in this context. The solutions developed minimize transmission losses due to the glass cover and in that sense are an improvement on previous work. They also achieve a higher optical performance than other second stage solutions, because they are designed to eliminate optical losses through large gaps, something that is associated with the fact that the outer glass envelope has a much larger diameter than the inner receiver tube. The paper presents new examples of larger troughs with second stage concentrators, characterizing and comparing them with a “conventional” PT. The comparison is done for optical properties and for the energy collected on a sunny location (Faro, Portugal). The paper ends with a similar exercise done for fixed receiver troughs, an exercise that also leads to larger troughs (since it is done for the same 70 mm inner (evacuated) receiver tube) and concentration is increased. Again optical properties and energy performance are presented and compared with the conventional PT. The new solutions represent a potential reduction in field costs or even in O&M, as suggested, and this exercise will enable manufacturers the pondering of the manufacture of larger troughs (perhaps cheaper on a sqm basis) but with the extra cost of a secondary concentrator, knowing how much energy to expect from the adoption of solutions that benefit non-imaging optics design methods.
id RCAP_96f59f566edc637401873b2391c42e7b
oai_identifier_str oai:dspace.uevora.pt:10174/31424
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling New Optical Designs for Large Parabolic TroughsParabolic TroughsSMS MethodNon-Imaging OpticsConcentrated Solar PowerThe potential for cost reduction in parabolic troughs (PT) large collector fields is real and will be achieved in a variety of different ways. One problem certainly contributing to the costs of Solar Thermal Electricity (STE) PT fields is certainly the fact that large fields have a significant quantity of receiver lines and pipes bringing the heat transfer fluid to and off from them. The very large pipe length in large collector fields (for instance the 50MW fields in Spain) is a source of heat losses and parasitic losses due to significant pumping power, but also a source of other costs related to the number of pumps, to the amount of (costly) circulating fluid etc. In any given large field, receiver length and pipe length are determined by the aperture size of the PTs and one way to reduce these impacts on cost would be to increase aperture size. This has been the idea behind developments like the Ultimate Trough. In this paper new optical solutions are presented to obtain much larger troughs, using the same “standard” evacuated 70 mm inner radius tube, which in fact amounts to a substantial increase of concentration, but without sacrificing the acceptance angle of the optic. The Simultaneous Multiple Surface (SMS) method is used and practical solutions are obtained for apertures nearly close to twice the present standard of ≈ 6m width. The case of troughs for fixed receiver tubes is also discussed in this context. The solutions developed minimize transmission losses due to the glass cover and in that sense are an improvement on previous work. They also achieve a higher optical performance than other second stage solutions, because they are designed to eliminate optical losses through large gaps, something that is associated with the fact that the outer glass envelope has a much larger diameter than the inner receiver tube. The paper presents new examples of larger troughs with second stage concentrators, characterizing and comparing them with a “conventional” PT. The comparison is done for optical properties and for the energy collected on a sunny location (Faro, Portugal). The paper ends with a similar exercise done for fixed receiver troughs, an exercise that also leads to larger troughs (since it is done for the same 70 mm inner (evacuated) receiver tube) and concentration is increased. Again optical properties and energy performance are presented and compared with the conventional PT. The new solutions represent a potential reduction in field costs or even in O&M, as suggested, and this exercise will enable manufacturers the pondering of the manufacture of larger troughs (perhaps cheaper on a sqm basis) but with the extra cost of a secondary concentrator, knowing how much energy to expect from the adoption of solutions that benefit non-imaging optics design methods.Energy Procedia2022-03-23T16:11:38Z2022-03-232014-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjecthttp://hdl.handle.net/10174/31424http://hdl.handle.net/10174/31424https://doi.org/10.1016/j.egypro.2014.03.137enghttps://www.sciencedirect.com/science/article/pii/S1876610214005918simnaonaodiogocvr@uevora.ptjulio.c.chaves@gmail.comcollarespereira@uevora.pt348Canavarro, DiogoChaves, JúlioCollares-Pereira, Manuelinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-01-03T19:31:24Zoai:dspace.uevora.pt:10174/31424Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T01:20:43.777522Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv New Optical Designs for Large Parabolic Troughs
title New Optical Designs for Large Parabolic Troughs
spellingShingle New Optical Designs for Large Parabolic Troughs
Canavarro, Diogo
Parabolic Troughs
SMS Method
Non-Imaging Optics
Concentrated Solar Power
title_short New Optical Designs for Large Parabolic Troughs
title_full New Optical Designs for Large Parabolic Troughs
title_fullStr New Optical Designs for Large Parabolic Troughs
title_full_unstemmed New Optical Designs for Large Parabolic Troughs
title_sort New Optical Designs for Large Parabolic Troughs
author Canavarro, Diogo
author_facet Canavarro, Diogo
Chaves, Júlio
Collares-Pereira, Manuel
author_role author
author2 Chaves, Júlio
Collares-Pereira, Manuel
author2_role author
author
dc.contributor.author.fl_str_mv Canavarro, Diogo
Chaves, Júlio
Collares-Pereira, Manuel
dc.subject.por.fl_str_mv Parabolic Troughs
SMS Method
Non-Imaging Optics
Concentrated Solar Power
topic Parabolic Troughs
SMS Method
Non-Imaging Optics
Concentrated Solar Power
description The potential for cost reduction in parabolic troughs (PT) large collector fields is real and will be achieved in a variety of different ways. One problem certainly contributing to the costs of Solar Thermal Electricity (STE) PT fields is certainly the fact that large fields have a significant quantity of receiver lines and pipes bringing the heat transfer fluid to and off from them. The very large pipe length in large collector fields (for instance the 50MW fields in Spain) is a source of heat losses and parasitic losses due to significant pumping power, but also a source of other costs related to the number of pumps, to the amount of (costly) circulating fluid etc. In any given large field, receiver length and pipe length are determined by the aperture size of the PTs and one way to reduce these impacts on cost would be to increase aperture size. This has been the idea behind developments like the Ultimate Trough. In this paper new optical solutions are presented to obtain much larger troughs, using the same “standard” evacuated 70 mm inner radius tube, which in fact amounts to a substantial increase of concentration, but without sacrificing the acceptance angle of the optic. The Simultaneous Multiple Surface (SMS) method is used and practical solutions are obtained for apertures nearly close to twice the present standard of ≈ 6m width. The case of troughs for fixed receiver tubes is also discussed in this context. The solutions developed minimize transmission losses due to the glass cover and in that sense are an improvement on previous work. They also achieve a higher optical performance than other second stage solutions, because they are designed to eliminate optical losses through large gaps, something that is associated with the fact that the outer glass envelope has a much larger diameter than the inner receiver tube. The paper presents new examples of larger troughs with second stage concentrators, characterizing and comparing them with a “conventional” PT. The comparison is done for optical properties and for the energy collected on a sunny location (Faro, Portugal). The paper ends with a similar exercise done for fixed receiver troughs, an exercise that also leads to larger troughs (since it is done for the same 70 mm inner (evacuated) receiver tube) and concentration is increased. Again optical properties and energy performance are presented and compared with the conventional PT. The new solutions represent a potential reduction in field costs or even in O&M, as suggested, and this exercise will enable manufacturers the pondering of the manufacture of larger troughs (perhaps cheaper on a sqm basis) but with the extra cost of a secondary concentrator, knowing how much energy to expect from the adoption of solutions that benefit non-imaging optics design methods.
publishDate 2014
dc.date.none.fl_str_mv 2014-01-01T00:00:00Z
2022-03-23T16:11:38Z
2022-03-23
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/conferenceObject
format conferenceObject
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10174/31424
http://hdl.handle.net/10174/31424
https://doi.org/10.1016/j.egypro.2014.03.137
url http://hdl.handle.net/10174/31424
https://doi.org/10.1016/j.egypro.2014.03.137
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv https://www.sciencedirect.com/science/article/pii/S1876610214005918
sim
nao
nao
diogocvr@uevora.pt
julio.c.chaves@gmail.com
collarespereira@uevora.pt
348
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Energy Procedia
publisher.none.fl_str_mv Energy Procedia
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799136688916660224