Asymptotic linearity and limit distributions, approximations.

Detalhes bibliográficos
Autor(a) principal: Mexia, J.T., Oliveira, M.M.
Data de Publicação: 2010
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10174/2594
Resumo: Linear and quadratic forms as well as other low degree polynomials play an important role in statistical inference. Asymptotic results and limit distributions are obtained for a class of statistics depending on m þ X, with X any random vector and m non-random vector with JmJ-þ1. This class contain the polynomials in m þ X. An application to the case of normal X is presented. This application includes a new central limit theorem which is connected with the increase of non-centrality for samples of fixed size. Moreover upper bounds for the suprema of the differences between exact and approximate distributions and their quantiles are obtained.
id RCAP_9729265e164638d3fce943dd5188fde5
oai_identifier_str oai:dspace.uevora.pt:10174/2594
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Asymptotic linearity and limit distributions, approximations.Asymptotic linearityLinear and quadratic forms as well as other low degree polynomials play an important role in statistical inference. Asymptotic results and limit distributions are obtained for a class of statistics depending on m þ X, with X any random vector and m non-random vector with JmJ-þ1. This class contain the polynomials in m þ X. An application to the case of normal X is presented. This application includes a new central limit theorem which is connected with the increase of non-centrality for samples of fixed size. Moreover upper bounds for the suprema of the differences between exact and approximate distributions and their quantiles are obtained.2011-03-10T11:40:55Z2011-03-102010-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article284813 bytesapplication/pdfhttp://hdl.handle.net/10174/2594http://hdl.handle.net/10174/2594eng353-357.Vol. 140, (2)Journal of Statistical Planning and Inferencelivrend336Mexia, J.T., Oliveira, M.M.,info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-01-03T18:39:08Zoai:dspace.uevora.pt:10174/2594Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T00:58:15.068886Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Asymptotic linearity and limit distributions, approximations.
title Asymptotic linearity and limit distributions, approximations.
spellingShingle Asymptotic linearity and limit distributions, approximations.
Mexia, J.T., Oliveira, M.M.,
Asymptotic linearity
title_short Asymptotic linearity and limit distributions, approximations.
title_full Asymptotic linearity and limit distributions, approximations.
title_fullStr Asymptotic linearity and limit distributions, approximations.
title_full_unstemmed Asymptotic linearity and limit distributions, approximations.
title_sort Asymptotic linearity and limit distributions, approximations.
author Mexia, J.T., Oliveira, M.M.,
author_facet Mexia, J.T., Oliveira, M.M.,
author_role author
dc.contributor.author.fl_str_mv Mexia, J.T., Oliveira, M.M.,
dc.subject.por.fl_str_mv Asymptotic linearity
topic Asymptotic linearity
description Linear and quadratic forms as well as other low degree polynomials play an important role in statistical inference. Asymptotic results and limit distributions are obtained for a class of statistics depending on m þ X, with X any random vector and m non-random vector with JmJ-þ1. This class contain the polynomials in m þ X. An application to the case of normal X is presented. This application includes a new central limit theorem which is connected with the increase of non-centrality for samples of fixed size. Moreover upper bounds for the suprema of the differences between exact and approximate distributions and their quantiles are obtained.
publishDate 2010
dc.date.none.fl_str_mv 2010-01-01T00:00:00Z
2011-03-10T11:40:55Z
2011-03-10
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10174/2594
http://hdl.handle.net/10174/2594
url http://hdl.handle.net/10174/2594
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 353-357.
Vol. 140, (2)
Journal of Statistical Planning and Inference
livre
nd
336
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 284813 bytes
application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1817551600126787584