Experiments in evolutionary collective robotics
Autor(a) principal: | |
---|---|
Data de Publicação: | 2011 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10451/13893 |
Resumo: | Evolutionary robotics is a technique that aims to create controllers and sometimes morphologies for autonomous robots by using evolutionary computation techniques, such as genetic algorithms. Inspired by the Darwinian principle of survival of the fittest through reproductive success, the genetic algorithms select the fittest individuals of each generation in order to create the next one and so forth, until a suitable controller for the designated task is found or for a certain number of generations. The main goal of this work is to study the emergence of collective behaviors in a group of autonomous robots by using artificial evolution techniques to evolve suitable controllers. The emergence of explicit communication protocols in the experiments is also studied in order to understand its influence on the behaviors the controllers evolved. Since artificial evolution can be a time consuming task, and because of the random nature of the controllers produced in early generations can damage real robots, a simulator is often used to evolve and test the controllers. The controllers used in this study are Continuous Time Recurrent Neural Networks whose weights of the synaptic connections, bias and decay rates are encoded into chromosomes. The chromosomes are produced by using a genetic algorithm and evaluated by an evaluation function designed specifically for the task that simulated robots have to perform. The controllers produced through artificial evolution are tested in terms of performance and scalability. The components of the simulator, such as evaluation functions, environments, experiments, physical objects and so forth are described. Some guidelines of how to create such components, as well as some code examples, are available in the report to allow future users to modify and improve the simulator. |
id |
RCAP_974dd7a7365d2408373580ca773a5aae |
---|---|
oai_identifier_str |
oai:repositorio.ul.pt:10451/13893 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Experiments in evolutionary collective roboticsself-organized aggregationcollective choiceartificial evolutionresource managementartificial neural networksCollective evolutionary roboticsEvolutionary robotics is a technique that aims to create controllers and sometimes morphologies for autonomous robots by using evolutionary computation techniques, such as genetic algorithms. Inspired by the Darwinian principle of survival of the fittest through reproductive success, the genetic algorithms select the fittest individuals of each generation in order to create the next one and so forth, until a suitable controller for the designated task is found or for a certain number of generations. The main goal of this work is to study the emergence of collective behaviors in a group of autonomous robots by using artificial evolution techniques to evolve suitable controllers. The emergence of explicit communication protocols in the experiments is also studied in order to understand its influence on the behaviors the controllers evolved. Since artificial evolution can be a time consuming task, and because of the random nature of the controllers produced in early generations can damage real robots, a simulator is often used to evolve and test the controllers. The controllers used in this study are Continuous Time Recurrent Neural Networks whose weights of the synaptic connections, bias and decay rates are encoded into chromosomes. The chromosomes are produced by using a genetic algorithm and evaluated by an evaluation function designed specifically for the task that simulated robots have to perform. The controllers produced through artificial evolution are tested in terms of performance and scalability. The components of the simulator, such as evaluation functions, environments, experiments, physical objects and so forth are described. Some guidelines of how to create such components, as well as some code examples, are available in the report to allow future users to modify and improve the simulator.Urbano, Paulo Jorge Cunha Vaz DiasRepositório da Universidade de LisboaBastos, André González Amor de2011-12-19T10:59:43Z20112011-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10451/13893enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-08T15:59:21Zoai:repositorio.ul.pt:10451/13893Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T21:35:49.802990Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Experiments in evolutionary collective robotics |
title |
Experiments in evolutionary collective robotics |
spellingShingle |
Experiments in evolutionary collective robotics Bastos, André González Amor de self-organized aggregation collective choice artificial evolution resource management artificial neural networks Collective evolutionary robotics |
title_short |
Experiments in evolutionary collective robotics |
title_full |
Experiments in evolutionary collective robotics |
title_fullStr |
Experiments in evolutionary collective robotics |
title_full_unstemmed |
Experiments in evolutionary collective robotics |
title_sort |
Experiments in evolutionary collective robotics |
author |
Bastos, André González Amor de |
author_facet |
Bastos, André González Amor de |
author_role |
author |
dc.contributor.none.fl_str_mv |
Urbano, Paulo Jorge Cunha Vaz Dias Repositório da Universidade de Lisboa |
dc.contributor.author.fl_str_mv |
Bastos, André González Amor de |
dc.subject.por.fl_str_mv |
self-organized aggregation collective choice artificial evolution resource management artificial neural networks Collective evolutionary robotics |
topic |
self-organized aggregation collective choice artificial evolution resource management artificial neural networks Collective evolutionary robotics |
description |
Evolutionary robotics is a technique that aims to create controllers and sometimes morphologies for autonomous robots by using evolutionary computation techniques, such as genetic algorithms. Inspired by the Darwinian principle of survival of the fittest through reproductive success, the genetic algorithms select the fittest individuals of each generation in order to create the next one and so forth, until a suitable controller for the designated task is found or for a certain number of generations. The main goal of this work is to study the emergence of collective behaviors in a group of autonomous robots by using artificial evolution techniques to evolve suitable controllers. The emergence of explicit communication protocols in the experiments is also studied in order to understand its influence on the behaviors the controllers evolved. Since artificial evolution can be a time consuming task, and because of the random nature of the controllers produced in early generations can damage real robots, a simulator is often used to evolve and test the controllers. The controllers used in this study are Continuous Time Recurrent Neural Networks whose weights of the synaptic connections, bias and decay rates are encoded into chromosomes. The chromosomes are produced by using a genetic algorithm and evaluated by an evaluation function designed specifically for the task that simulated robots have to perform. The controllers produced through artificial evolution are tested in terms of performance and scalability. The components of the simulator, such as evaluation functions, environments, experiments, physical objects and so forth are described. Some guidelines of how to create such components, as well as some code examples, are available in the report to allow future users to modify and improve the simulator. |
publishDate |
2011 |
dc.date.none.fl_str_mv |
2011-12-19T10:59:43Z 2011 2011-01-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10451/13893 |
url |
http://hdl.handle.net/10451/13893 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799134257521623040 |