Behavior of flat slabs with partial use of high-performance fiber reinforced concrete under monotonic vertical loading
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10362/145833 |
Resumo: | Publisher Copyright: © 2022 Elsevier Ltd |
id |
RCAP_97c9b14ce2d5e86a37f59634b0c93f85 |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/145833 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Behavior of flat slabs with partial use of high-performance fiber reinforced concrete under monotonic vertical loadingFiber reinforced concreteFlat slabFRCHigh performance concreteHPFRC punching shearCivil and Structural EngineeringPublisher Copyright: © 2022 Elsevier LtdReinforced concrete flat slabs are used worldwide in multi-story buildings. In these slabs, the design is often governed by punching shear and serviceability. The mitigation of these issues during design usually leads to increased raw material consumption and costs. Previous studies have shown that using Fiber Reinforced Concrete (FRC) or High-Strength Concrete (HSC) only at the vicinity of the column, while casting the rest of the slab with Normal Strength Concrete (NSC), can lead to an improved behavior under gravity loads in terms of both serviceability and ultimate capacity. Motivated by these results and the scarcity of previous tests, the present paper experimentally investigates the applicability of High-Performance Fiber Reinforced Concrete (HPFRC) as an alternative material that can be seen as an improvement over FRC and HSC, allowing a combination of ductility and strength. In addition, the HPFRC used in this paper is self-compacting, thus reducing the labor costs associated with concrete vibration. Five 150 mm thick flat slabs were tested under monotonically increasing punching load. The experimental variables were the flexural reinforcement ratio and the extent of the HPFRC zone. One of the specimens was cast only with NSC and served as a reference slab. Results show that the solution was effective for both flexural reinforcement ratios considered. Cracking load, maximum load, as well as the displacement capacity were increased significantly, even for a small extent of HPFRC (1.5 times the effective depth from the face of the column). Regarding the ultimate load capacity, it was observed an increase of 44% to 58% for the specimens with lower reinforcement ratio (0.64%) and between 15%–21% for the specimens with higher reinforcement ratio (0.96%). The results indicate that the use of HPFRC is a promising solution regarding both serviceability and ultimate limit state design of reinforced concrete flat slabs under gravity loading, with obvious advantages in material savings and labor costs.DEC - Departamento de Engenharia CivilCERIS - Polo NOVARUNIsufi, BrisidRelvas, João PedroMarchão, CarlaRamos, António Pinho2022-11-28T22:12:13Z2022-08-012022-08-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article14application/pdfhttp://hdl.handle.net/10362/145833eng0141-0296PURE: 44853470https://doi.org/10.1016/j.engstruct.2022.114471info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T05:26:29Zoai:run.unl.pt:10362/145833Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:52:16.950030Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Behavior of flat slabs with partial use of high-performance fiber reinforced concrete under monotonic vertical loading |
title |
Behavior of flat slabs with partial use of high-performance fiber reinforced concrete under monotonic vertical loading |
spellingShingle |
Behavior of flat slabs with partial use of high-performance fiber reinforced concrete under monotonic vertical loading Isufi, Brisid Fiber reinforced concrete Flat slab FRC High performance concrete HPFRC punching shear Civil and Structural Engineering |
title_short |
Behavior of flat slabs with partial use of high-performance fiber reinforced concrete under monotonic vertical loading |
title_full |
Behavior of flat slabs with partial use of high-performance fiber reinforced concrete under monotonic vertical loading |
title_fullStr |
Behavior of flat slabs with partial use of high-performance fiber reinforced concrete under monotonic vertical loading |
title_full_unstemmed |
Behavior of flat slabs with partial use of high-performance fiber reinforced concrete under monotonic vertical loading |
title_sort |
Behavior of flat slabs with partial use of high-performance fiber reinforced concrete under monotonic vertical loading |
author |
Isufi, Brisid |
author_facet |
Isufi, Brisid Relvas, João Pedro Marchão, Carla Ramos, António Pinho |
author_role |
author |
author2 |
Relvas, João Pedro Marchão, Carla Ramos, António Pinho |
author2_role |
author author author |
dc.contributor.none.fl_str_mv |
DEC - Departamento de Engenharia Civil CERIS - Polo NOVA RUN |
dc.contributor.author.fl_str_mv |
Isufi, Brisid Relvas, João Pedro Marchão, Carla Ramos, António Pinho |
dc.subject.por.fl_str_mv |
Fiber reinforced concrete Flat slab FRC High performance concrete HPFRC punching shear Civil and Structural Engineering |
topic |
Fiber reinforced concrete Flat slab FRC High performance concrete HPFRC punching shear Civil and Structural Engineering |
description |
Publisher Copyright: © 2022 Elsevier Ltd |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-11-28T22:12:13Z 2022-08-01 2022-08-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/145833 |
url |
http://hdl.handle.net/10362/145833 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
0141-0296 PURE: 44853470 https://doi.org/10.1016/j.engstruct.2022.114471 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
14 application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799138114425323520 |