Detection of inhomogeneities in precipitation time series in Portugal using direct sequential simulation
Autor(a) principal: | |
---|---|
Data de Publicação: | 2016 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | https://doi.org/10.1016/j.atmosres.2015.11.014 |
Resumo: | Ribeiro, S., Caineta, J., Costa, A. C., Henriques, R., & Soares, A. (2016). Detection of inhomogeneities in precipitation time series in Portugal using direct sequential simulation. Atmospheric Research, 171, 147-158. https://doi.org/10.1016/j.atmosres.2015.11.014---------------- The authors gratefully acknowledge the financial support of “Fundação para a Ciência e Tecnologia” (FCT), Portugal, through the research project PTDC/GEO-MET/4026/2012 (“GSIMCLI – Geostatistical simulation with local distributions for the homogenisation and interpolation of climate data”). |
id |
RCAP_97d3292dec3c0fa9529ac617a4073de3 |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/76514 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Detection of inhomogeneities in precipitation time series in Portugal using direct sequential simulationDiscontinuitiesGeostatistical simulationHomogeneity testsHomogenizationAtmospheric ScienceSDG 13 - Climate ActionRibeiro, S., Caineta, J., Costa, A. C., Henriques, R., & Soares, A. (2016). Detection of inhomogeneities in precipitation time series in Portugal using direct sequential simulation. Atmospheric Research, 171, 147-158. https://doi.org/10.1016/j.atmosres.2015.11.014---------------- The authors gratefully acknowledge the financial support of “Fundação para a Ciência e Tecnologia” (FCT), Portugal, through the research project PTDC/GEO-MET/4026/2012 (“GSIMCLI – Geostatistical simulation with local distributions for the homogenisation and interpolation of climate data”).Climate data homogenisation is of major importance in climate change monitoring, validation of weather forecasting, general circulation and regional atmospheric models, modelling of erosion, drought monitoring, among other studies of hydrological and environmental impacts. The reason is that non-climate factors can cause time series discontinuities which may hide the true climatic signal and patterns, thus potentially bias the conclusions of those studies. In the last two decades, many methods have been developed to identify and remove these inhomogeneities. One of those is based on a geostatistical simulation technique (DSS - direct sequential simulation), where local probability density functions (pdfs) are calculated at candidate monitoring stations using spatial and temporal neighbouring observations, which then are used for the detection of inhomogeneities. Such approach has been previously applied to detect inhomogeneities in four precipitation series (wet day count) from a network with 66 monitoring stations located in the southern region of Portugal (1980-2001). That study revealed promising results and the potential advantages of geostatistical techniques for inhomogeneity detection in climate time series. This work extends the case study presented before and investigates the application of the geostatistical stochastic approach to ten precipitation series that were previously classified as inhomogeneous by one of six absolute homogeneity tests (Mann-Kendall, Wald-Wolfowitz runs, Von Neumann ratio, Pettitt, Buishand range test, and standard normal homogeneity test (SNHT) for a single break). Moreover, a sensitivity analysis is performed to investigate the number of simulated realisations which should be used to infer the local pdfs with more accuracy. Accordingly, the number of simulations per iteration was increased from 50 to 500, which resulted in a more representative local pdf. As in the previous study, the results are compared with those from the SNHT, Pettitt and Buishand range tests, which were applied to composite (ratio) reference series. The geostatistical procedure also allowed us to fill in missing values in the climate data series. Finally, based on several experiments aimed at providing a sensitivity analysis of the procedure, a set of default and recommended settings is provided, which will help other users to apply this method.Information Management Research Center (MagIC) - NOVA Information Management SchoolNOVA Information Management School (NOVA IMS)RUNRibeiro, SaraCaineta, JúlioCosta, Ana CristinaHenriques, RobertoSoares, Amílcar2019-07-25T22:17:43Z2016-05-012016-05-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article12application/pdfhttps://doi.org/10.1016/j.atmosres.2015.11.014eng0169-8095PURE: 2559591http://www.scopus.com/inward/record.url?scp=84954374333&partnerID=8YFLogxKhttps://doi.org/10.1016/j.atmosres.2015.11.014info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T04:34:51Zoai:run.unl.pt:10362/76514Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:35:38.382467Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Detection of inhomogeneities in precipitation time series in Portugal using direct sequential simulation |
title |
Detection of inhomogeneities in precipitation time series in Portugal using direct sequential simulation |
spellingShingle |
Detection of inhomogeneities in precipitation time series in Portugal using direct sequential simulation Ribeiro, Sara Discontinuities Geostatistical simulation Homogeneity tests Homogenization Atmospheric Science SDG 13 - Climate Action |
title_short |
Detection of inhomogeneities in precipitation time series in Portugal using direct sequential simulation |
title_full |
Detection of inhomogeneities in precipitation time series in Portugal using direct sequential simulation |
title_fullStr |
Detection of inhomogeneities in precipitation time series in Portugal using direct sequential simulation |
title_full_unstemmed |
Detection of inhomogeneities in precipitation time series in Portugal using direct sequential simulation |
title_sort |
Detection of inhomogeneities in precipitation time series in Portugal using direct sequential simulation |
author |
Ribeiro, Sara |
author_facet |
Ribeiro, Sara Caineta, Júlio Costa, Ana Cristina Henriques, Roberto Soares, Amílcar |
author_role |
author |
author2 |
Caineta, Júlio Costa, Ana Cristina Henriques, Roberto Soares, Amílcar |
author2_role |
author author author author |
dc.contributor.none.fl_str_mv |
Information Management Research Center (MagIC) - NOVA Information Management School NOVA Information Management School (NOVA IMS) RUN |
dc.contributor.author.fl_str_mv |
Ribeiro, Sara Caineta, Júlio Costa, Ana Cristina Henriques, Roberto Soares, Amílcar |
dc.subject.por.fl_str_mv |
Discontinuities Geostatistical simulation Homogeneity tests Homogenization Atmospheric Science SDG 13 - Climate Action |
topic |
Discontinuities Geostatistical simulation Homogeneity tests Homogenization Atmospheric Science SDG 13 - Climate Action |
description |
Ribeiro, S., Caineta, J., Costa, A. C., Henriques, R., & Soares, A. (2016). Detection of inhomogeneities in precipitation time series in Portugal using direct sequential simulation. Atmospheric Research, 171, 147-158. https://doi.org/10.1016/j.atmosres.2015.11.014---------------- The authors gratefully acknowledge the financial support of “Fundação para a Ciência e Tecnologia” (FCT), Portugal, through the research project PTDC/GEO-MET/4026/2012 (“GSIMCLI – Geostatistical simulation with local distributions for the homogenisation and interpolation of climate data”). |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-05-01 2016-05-01T00:00:00Z 2019-07-25T22:17:43Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://doi.org/10.1016/j.atmosres.2015.11.014 |
url |
https://doi.org/10.1016/j.atmosres.2015.11.014 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
0169-8095 PURE: 2559591 http://www.scopus.com/inward/record.url?scp=84954374333&partnerID=8YFLogxK https://doi.org/10.1016/j.atmosres.2015.11.014 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
12 application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799137976938135552 |