Rapport : a fact-based question answering system for portuguese

Detalhes bibliográficos
Autor(a) principal: Rodrigues, Ricardo
Data de Publicação: 2017
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10400.26/47913
Resumo: Question answering is one of the longest-standing problems in natural language processing. Although natural language interfaces for computer systems can be considered more common these days, the same still does not happen regarding access to specific textual information. Any full text search engine can easily retrieve documents containing user specified or closely related terms, however it is typically unable to answer user questions with small passages or short answers. The problem with question answering is that text is hard to process, due to its syntactic structure and, to a higher degree, to its semantic contents. At the sentence level, although the syntactic aspects of natural language have well known rules, the size and complexity of a sentence may make it difficult to analyze its structure. Furthermore, semantic aspects are still arduous to address, with text ambiguity being one of the hardest tasks to handle. There is also the need to correctly process the question in order to define its target, and then select and process the answers found in a text. Additionally, the selected text that may yield the answer to a given question must be further processed in order to present just a passage instead of the full text. These issues take also longer to address in languages other than English, as is the case of Portuguese, that have a lot less people working on them. This work focuses on question answering for Portuguese. In other words, our field of interest is in the presentation of short answers, passages, and possibly full sentences, but not whole documents, to questions formulated using natural language. For that purpose, we have developed a system, RAPPORT, built upon the use of open information extraction techniques for extracting triples, so called facts, characterizing information on text files, and then storing and using them for answering user queries done in natural language. These facts, in the form of subject, predicate and object, alongside other metadata, constitute the basis of the answers presented by the system. Facts work both by storing short and direct information found in a text, typically entity related information, and by containing in themselves the answers to the questions already in the form of small passages. As for the results, although there is margin for improvement, they are a tangible proof of the adequacy of our approach and its different modules for storing information and retrieving answers in question answering systems. In the process, in addition to contributing with a new approach to question answering for Portuguese, and validating the application of open information extraction to question answering, we have developed a set of tools that has been used in other natural language processing related works, such as is the case of a lemmatizer, LEMPORT, which was built from scratch, and has a high accuracy. Many of these tools result from the improvement of those found in the Apache OpenNLP toolkit, by pre-processing their input, post-processing their output, or both, and by training models for use in those tools or other, such as MaltParser. Other tools include the creation of interfaces for other resources containing, for example, synonyms, hypernyms, hyponyms, or the creation of lists of, for instance, relations between verbs and agents, using rules.
id RCAP_97fdafde4bde8c730acfff16b59ad351
oai_identifier_str oai:comum.rcaap.pt:10400.26/47913
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Rapport : a fact-based question answering system for portugueseQuestion answering is one of the longest-standing problems in natural language processing. Although natural language interfaces for computer systems can be considered more common these days, the same still does not happen regarding access to specific textual information. Any full text search engine can easily retrieve documents containing user specified or closely related terms, however it is typically unable to answer user questions with small passages or short answers. The problem with question answering is that text is hard to process, due to its syntactic structure and, to a higher degree, to its semantic contents. At the sentence level, although the syntactic aspects of natural language have well known rules, the size and complexity of a sentence may make it difficult to analyze its structure. Furthermore, semantic aspects are still arduous to address, with text ambiguity being one of the hardest tasks to handle. There is also the need to correctly process the question in order to define its target, and then select and process the answers found in a text. Additionally, the selected text that may yield the answer to a given question must be further processed in order to present just a passage instead of the full text. These issues take also longer to address in languages other than English, as is the case of Portuguese, that have a lot less people working on them. This work focuses on question answering for Portuguese. In other words, our field of interest is in the presentation of short answers, passages, and possibly full sentences, but not whole documents, to questions formulated using natural language. For that purpose, we have developed a system, RAPPORT, built upon the use of open information extraction techniques for extracting triples, so called facts, characterizing information on text files, and then storing and using them for answering user queries done in natural language. These facts, in the form of subject, predicate and object, alongside other metadata, constitute the basis of the answers presented by the system. Facts work both by storing short and direct information found in a text, typically entity related information, and by containing in themselves the answers to the questions already in the form of small passages. As for the results, although there is margin for improvement, they are a tangible proof of the adequacy of our approach and its different modules for storing information and retrieving answers in question answering systems. In the process, in addition to contributing with a new approach to question answering for Portuguese, and validating the application of open information extraction to question answering, we have developed a set of tools that has been used in other natural language processing related works, such as is the case of a lemmatizer, LEMPORT, which was built from scratch, and has a high accuracy. Many of these tools result from the improvement of those found in the Apache OpenNLP toolkit, by pre-processing their input, post-processing their output, or both, and by training models for use in those tools or other, such as MaltParser. Other tools include the creation of interfaces for other resources containing, for example, synonyms, hypernyms, hyponyms, or the creation of lists of, for instance, relations between verbs and agents, using rules.Gomes, Paulo Jorge de SousaMachado, Fernando Jorge Penousal MartinsRepositório ComumRodrigues, Ricardo2023-11-09T13:22:21Z20172017-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10400.26/47913enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-16T02:15:52Zoai:comum.rcaap.pt:10400.26/47913Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T22:42:37.344308Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Rapport : a fact-based question answering system for portuguese
title Rapport : a fact-based question answering system for portuguese
spellingShingle Rapport : a fact-based question answering system for portuguese
Rodrigues, Ricardo
title_short Rapport : a fact-based question answering system for portuguese
title_full Rapport : a fact-based question answering system for portuguese
title_fullStr Rapport : a fact-based question answering system for portuguese
title_full_unstemmed Rapport : a fact-based question answering system for portuguese
title_sort Rapport : a fact-based question answering system for portuguese
author Rodrigues, Ricardo
author_facet Rodrigues, Ricardo
author_role author
dc.contributor.none.fl_str_mv Gomes, Paulo Jorge de Sousa
Machado, Fernando Jorge Penousal Martins
Repositório Comum
dc.contributor.author.fl_str_mv Rodrigues, Ricardo
description Question answering is one of the longest-standing problems in natural language processing. Although natural language interfaces for computer systems can be considered more common these days, the same still does not happen regarding access to specific textual information. Any full text search engine can easily retrieve documents containing user specified or closely related terms, however it is typically unable to answer user questions with small passages or short answers. The problem with question answering is that text is hard to process, due to its syntactic structure and, to a higher degree, to its semantic contents. At the sentence level, although the syntactic aspects of natural language have well known rules, the size and complexity of a sentence may make it difficult to analyze its structure. Furthermore, semantic aspects are still arduous to address, with text ambiguity being one of the hardest tasks to handle. There is also the need to correctly process the question in order to define its target, and then select and process the answers found in a text. Additionally, the selected text that may yield the answer to a given question must be further processed in order to present just a passage instead of the full text. These issues take also longer to address in languages other than English, as is the case of Portuguese, that have a lot less people working on them. This work focuses on question answering for Portuguese. In other words, our field of interest is in the presentation of short answers, passages, and possibly full sentences, but not whole documents, to questions formulated using natural language. For that purpose, we have developed a system, RAPPORT, built upon the use of open information extraction techniques for extracting triples, so called facts, characterizing information on text files, and then storing and using them for answering user queries done in natural language. These facts, in the form of subject, predicate and object, alongside other metadata, constitute the basis of the answers presented by the system. Facts work both by storing short and direct information found in a text, typically entity related information, and by containing in themselves the answers to the questions already in the form of small passages. As for the results, although there is margin for improvement, they are a tangible proof of the adequacy of our approach and its different modules for storing information and retrieving answers in question answering systems. In the process, in addition to contributing with a new approach to question answering for Portuguese, and validating the application of open information extraction to question answering, we have developed a set of tools that has been used in other natural language processing related works, such as is the case of a lemmatizer, LEMPORT, which was built from scratch, and has a high accuracy. Many of these tools result from the improvement of those found in the Apache OpenNLP toolkit, by pre-processing their input, post-processing their output, or both, and by training models for use in those tools or other, such as MaltParser. Other tools include the creation of interfaces for other resources containing, for example, synonyms, hypernyms, hyponyms, or the creation of lists of, for instance, relations between verbs and agents, using rules.
publishDate 2017
dc.date.none.fl_str_mv 2017
2017-01-01T00:00:00Z
2023-11-09T13:22:21Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.26/47913
url http://hdl.handle.net/10400.26/47913
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799134991651700737