Redox Cycles of Caffeic Acid, alpha-Tocopherol, and Ascorbate: Implications for Protection of Low-Density Lipoproteins Against Oxidation

Detalhes bibliográficos
Autor(a) principal: Laranjinha, João
Data de Publicação: 1999
Outros Autores: Cadenas, Enrique
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10316/8366
https://doi.org/10.1080/713803474
Resumo: This study addresses the dynamic interactions among alpha-tocopherol, caffeic acid, and ascorbate in terms of a sequence of redox cycles aimed at accomplishing optimal synergistic antioxidant protection. Several experimental models were designed to examine these interactions: UV irradiation of alpha-tocopherol-containing sodium dodecyl sulfate micelles, one-electron oxidations catalyzed by the hypervalent state of myoglobin, ferrylmyoglobin, and autoxidation at appropriate pHs. These models were assessed by ultraviolet (UV) and electron paramagnetic resonance (EPR), entailing direct- and continuous-flow experiments, spectroscopy and by separation and identification of products by HPLC. The alpha-tocopheroxyl radical EPR signal generated by UV irradiation of alpha-tocopherol containing micelles was suppressed by caffeic acid and ascorbate; in the former case, no other EPR signal was ob served at pH 7.4, whereas in the latter case, the alpha-tocopheroxyl radical EPR signal was replaced by a doublet EPR spectrum corresponding to the ascorbyl radical (A). The potential interactions between caffeic acid and ascorbate were further analyzed by assessing, on the one hand, the ability of ascorbate to reduce the caffeic acid o-semiquinone (generated by oxidation of caffeic acid by ferrylmyoglobin) and, on the other hand, the ability of caffeic acid to reduce ascorbyl radical (generated by autoxidation or oxidation of ascorbate by ferrylmyoglobin). The data presented indicate that the reductive decay of ascorbyl radical (A) and caffeic acid o-semiquinone (Caf-O) can be accomplished by caffeic acid (Caf-OH) and ascorbate (AH), respectively, thus pointing to the reversibility of the reaction Caf-O + AH Caf-OH + A-. Continuous-flow EPR measurements of mixtures containing ferrylmyoglobin, alpha-tocopherol-containing micelles, caffeic acid, and ascorbate revealed that ascorbate is the ultimate electron donor in the sequence encompassing transfer of the radical character from the micellar phase to the phase. In independent experiments, the effects of caffeic acid and ascorbate on the oxidation of two low density lipoprotein (LDL) populations, control and alpha-tocopherol enriched, were studied and results indicated that alpha-tocopherol, caffeic acid, and ascorbate acted synergistically to afford optimal protection of LDL against oxidation. These results are analyzed for each individual antioxidant in terms of three domains: its localization and that of the antioxidant-derived radical, its reduction potential, and the predominant decay pathways for the antioxidant-derived radical, that exert kinetic control on the process.
id RCAP_98103081d1c3ff9f4549825d178b7867
oai_identifier_str oai:estudogeral.uc.pt:10316/8366
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Redox Cycles of Caffeic Acid, alpha-Tocopherol, and Ascorbate: Implications for Protection of Low-Density Lipoproteins Against OxidationThis study addresses the dynamic interactions among alpha-tocopherol, caffeic acid, and ascorbate in terms of a sequence of redox cycles aimed at accomplishing optimal synergistic antioxidant protection. Several experimental models were designed to examine these interactions: UV irradiation of alpha-tocopherol-containing sodium dodecyl sulfate micelles, one-electron oxidations catalyzed by the hypervalent state of myoglobin, ferrylmyoglobin, and autoxidation at appropriate pHs. These models were assessed by ultraviolet (UV) and electron paramagnetic resonance (EPR), entailing direct- and continuous-flow experiments, spectroscopy and by separation and identification of products by HPLC. The alpha-tocopheroxyl radical EPR signal generated by UV irradiation of alpha-tocopherol containing micelles was suppressed by caffeic acid and ascorbate; in the former case, no other EPR signal was ob served at pH 7.4, whereas in the latter case, the alpha-tocopheroxyl radical EPR signal was replaced by a doublet EPR spectrum corresponding to the ascorbyl radical (A). The potential interactions between caffeic acid and ascorbate were further analyzed by assessing, on the one hand, the ability of ascorbate to reduce the caffeic acid o-semiquinone (generated by oxidation of caffeic acid by ferrylmyoglobin) and, on the other hand, the ability of caffeic acid to reduce ascorbyl radical (generated by autoxidation or oxidation of ascorbate by ferrylmyoglobin). The data presented indicate that the reductive decay of ascorbyl radical (A) and caffeic acid o-semiquinone (Caf-O) can be accomplished by caffeic acid (Caf-OH) and ascorbate (AH), respectively, thus pointing to the reversibility of the reaction Caf-O + AH Caf-OH + A-. Continuous-flow EPR measurements of mixtures containing ferrylmyoglobin, alpha-tocopherol-containing micelles, caffeic acid, and ascorbate revealed that ascorbate is the ultimate electron donor in the sequence encompassing transfer of the radical character from the micellar phase to the phase. In independent experiments, the effects of caffeic acid and ascorbate on the oxidation of two low density lipoprotein (LDL) populations, control and alpha-tocopherol enriched, were studied and results indicated that alpha-tocopherol, caffeic acid, and ascorbate acted synergistically to afford optimal protection of LDL against oxidation. These results are analyzed for each individual antioxidant in terms of three domains: its localization and that of the antioxidant-derived radical, its reduction potential, and the predominant decay pathways for the antioxidant-derived radical, that exert kinetic control on the process.1999info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10316/8366http://hdl.handle.net/10316/8366https://doi.org/10.1080/713803474engIUBMB Life. 48:1 (1999) 57-65Laranjinha, JoãoCadenas, Enriqueinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2020-05-27T16:14:34Zoai:estudogeral.uc.pt:10316/8366Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T20:47:22.815383Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Redox Cycles of Caffeic Acid, alpha-Tocopherol, and Ascorbate: Implications for Protection of Low-Density Lipoproteins Against Oxidation
title Redox Cycles of Caffeic Acid, alpha-Tocopherol, and Ascorbate: Implications for Protection of Low-Density Lipoproteins Against Oxidation
spellingShingle Redox Cycles of Caffeic Acid, alpha-Tocopherol, and Ascorbate: Implications for Protection of Low-Density Lipoproteins Against Oxidation
Laranjinha, João
title_short Redox Cycles of Caffeic Acid, alpha-Tocopherol, and Ascorbate: Implications for Protection of Low-Density Lipoproteins Against Oxidation
title_full Redox Cycles of Caffeic Acid, alpha-Tocopherol, and Ascorbate: Implications for Protection of Low-Density Lipoproteins Against Oxidation
title_fullStr Redox Cycles of Caffeic Acid, alpha-Tocopherol, and Ascorbate: Implications for Protection of Low-Density Lipoproteins Against Oxidation
title_full_unstemmed Redox Cycles of Caffeic Acid, alpha-Tocopherol, and Ascorbate: Implications for Protection of Low-Density Lipoproteins Against Oxidation
title_sort Redox Cycles of Caffeic Acid, alpha-Tocopherol, and Ascorbate: Implications for Protection of Low-Density Lipoproteins Against Oxidation
author Laranjinha, João
author_facet Laranjinha, João
Cadenas, Enrique
author_role author
author2 Cadenas, Enrique
author2_role author
dc.contributor.author.fl_str_mv Laranjinha, João
Cadenas, Enrique
description This study addresses the dynamic interactions among alpha-tocopherol, caffeic acid, and ascorbate in terms of a sequence of redox cycles aimed at accomplishing optimal synergistic antioxidant protection. Several experimental models were designed to examine these interactions: UV irradiation of alpha-tocopherol-containing sodium dodecyl sulfate micelles, one-electron oxidations catalyzed by the hypervalent state of myoglobin, ferrylmyoglobin, and autoxidation at appropriate pHs. These models were assessed by ultraviolet (UV) and electron paramagnetic resonance (EPR), entailing direct- and continuous-flow experiments, spectroscopy and by separation and identification of products by HPLC. The alpha-tocopheroxyl radical EPR signal generated by UV irradiation of alpha-tocopherol containing micelles was suppressed by caffeic acid and ascorbate; in the former case, no other EPR signal was ob served at pH 7.4, whereas in the latter case, the alpha-tocopheroxyl radical EPR signal was replaced by a doublet EPR spectrum corresponding to the ascorbyl radical (A). The potential interactions between caffeic acid and ascorbate were further analyzed by assessing, on the one hand, the ability of ascorbate to reduce the caffeic acid o-semiquinone (generated by oxidation of caffeic acid by ferrylmyoglobin) and, on the other hand, the ability of caffeic acid to reduce ascorbyl radical (generated by autoxidation or oxidation of ascorbate by ferrylmyoglobin). The data presented indicate that the reductive decay of ascorbyl radical (A) and caffeic acid o-semiquinone (Caf-O) can be accomplished by caffeic acid (Caf-OH) and ascorbate (AH), respectively, thus pointing to the reversibility of the reaction Caf-O + AH Caf-OH + A-. Continuous-flow EPR measurements of mixtures containing ferrylmyoglobin, alpha-tocopherol-containing micelles, caffeic acid, and ascorbate revealed that ascorbate is the ultimate electron donor in the sequence encompassing transfer of the radical character from the micellar phase to the phase. In independent experiments, the effects of caffeic acid and ascorbate on the oxidation of two low density lipoprotein (LDL) populations, control and alpha-tocopherol enriched, were studied and results indicated that alpha-tocopherol, caffeic acid, and ascorbate acted synergistically to afford optimal protection of LDL against oxidation. These results are analyzed for each individual antioxidant in terms of three domains: its localization and that of the antioxidant-derived radical, its reduction potential, and the predominant decay pathways for the antioxidant-derived radical, that exert kinetic control on the process.
publishDate 1999
dc.date.none.fl_str_mv 1999
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10316/8366
http://hdl.handle.net/10316/8366
https://doi.org/10.1080/713803474
url http://hdl.handle.net/10316/8366
https://doi.org/10.1080/713803474
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv IUBMB Life. 48:1 (1999) 57-65
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799133751117086720