Yarn features extraction using image processing and computer vision: a study with cotton and polyester yarns

Detalhes bibliográficos
Autor(a) principal: Gonçalves, Nuno
Data de Publicação: 2015
Outros Autores: Carvalho, Vítor, Belsley, M., Vasconcelos, Rosa, Soares, Filomena, Machado, José
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/1822/42655
Resumo: The aim of this paper is the development of a new technological solution, for the automatic characterization of the yarn mass parameters (linear mass, diameter, and hairiness) based on image processing and computer vision techniques. A preliminary study for the detection and distinction between loop and protruding fibers is also presented. A custom-made application developed in LabVIEW from National Instruments with the IMAQ Vision Toolkit was used to acquire, analyze and process the yarn images. Some experimental results using cotton and polyester yarns were performed and compared with a commercial solution for validation. The presented approach allows a correct yarn parameterization improving products’ quality in the textile industry.
id RCAP_988788d155c9bd3bb39868dbd32569d6
oai_identifier_str oai:repositorium.sdum.uminho.pt:1822/42655
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Yarn features extraction using image processing and computer vision: a study with cotton and polyester yarnsYarn linear massYarn diameterYarn hairinessImage processingComputer visionIMAQ visionEngenharia e Tecnologia::Engenharia dos MateriaisThe aim of this paper is the development of a new technological solution, for the automatic characterization of the yarn mass parameters (linear mass, diameter, and hairiness) based on image processing and computer vision techniques. A preliminary study for the detection and distinction between loop and protruding fibers is also presented. A custom-made application developed in LabVIEW from National Instruments with the IMAQ Vision Toolkit was used to acquire, analyze and process the yarn images. Some experimental results using cotton and polyester yarns were performed and compared with a commercial solution for validation. The presented approach allows a correct yarn parameterization improving products’ quality in the textile industry.ElsevierUniversidade do MinhoGonçalves, NunoCarvalho, VítorBelsley, M.Vasconcelos, RosaSoares, FilomenaMachado, José20152015-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/1822/42655eng0263-224110.1016/j.measurement.2015.02.010info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-21T12:25:36Zoai:repositorium.sdum.uminho.pt:1822/42655Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T19:19:51.632424Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Yarn features extraction using image processing and computer vision: a study with cotton and polyester yarns
title Yarn features extraction using image processing and computer vision: a study with cotton and polyester yarns
spellingShingle Yarn features extraction using image processing and computer vision: a study with cotton and polyester yarns
Gonçalves, Nuno
Yarn linear mass
Yarn diameter
Yarn hairiness
Image processing
Computer vision
IMAQ vision
Engenharia e Tecnologia::Engenharia dos Materiais
title_short Yarn features extraction using image processing and computer vision: a study with cotton and polyester yarns
title_full Yarn features extraction using image processing and computer vision: a study with cotton and polyester yarns
title_fullStr Yarn features extraction using image processing and computer vision: a study with cotton and polyester yarns
title_full_unstemmed Yarn features extraction using image processing and computer vision: a study with cotton and polyester yarns
title_sort Yarn features extraction using image processing and computer vision: a study with cotton and polyester yarns
author Gonçalves, Nuno
author_facet Gonçalves, Nuno
Carvalho, Vítor
Belsley, M.
Vasconcelos, Rosa
Soares, Filomena
Machado, José
author_role author
author2 Carvalho, Vítor
Belsley, M.
Vasconcelos, Rosa
Soares, Filomena
Machado, José
author2_role author
author
author
author
author
dc.contributor.none.fl_str_mv Universidade do Minho
dc.contributor.author.fl_str_mv Gonçalves, Nuno
Carvalho, Vítor
Belsley, M.
Vasconcelos, Rosa
Soares, Filomena
Machado, José
dc.subject.por.fl_str_mv Yarn linear mass
Yarn diameter
Yarn hairiness
Image processing
Computer vision
IMAQ vision
Engenharia e Tecnologia::Engenharia dos Materiais
topic Yarn linear mass
Yarn diameter
Yarn hairiness
Image processing
Computer vision
IMAQ vision
Engenharia e Tecnologia::Engenharia dos Materiais
description The aim of this paper is the development of a new technological solution, for the automatic characterization of the yarn mass parameters (linear mass, diameter, and hairiness) based on image processing and computer vision techniques. A preliminary study for the detection and distinction between loop and protruding fibers is also presented. A custom-made application developed in LabVIEW from National Instruments with the IMAQ Vision Toolkit was used to acquire, analyze and process the yarn images. Some experimental results using cotton and polyester yarns were performed and compared with a commercial solution for validation. The presented approach allows a correct yarn parameterization improving products’ quality in the textile industry.
publishDate 2015
dc.date.none.fl_str_mv 2015
2015-01-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/1822/42655
url http://hdl.handle.net/1822/42655
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 0263-2241
10.1016/j.measurement.2015.02.010
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799132659326124032