The inverse eigenvalue problem for Hermitian matrices whose graphs are cycles

Detalhes bibliográficos
Autor(a) principal: Fernandes, Rosário
Data de Publicação: 2008
Outros Autores: Fonseca, C. M. da
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10316/11145
https://doi.org/10.1080/03081080802187870
Resumo: In 1979, Ferguson characterized the periodic Jacobi matrices with given eigenvalues and showed how to use the Lanzcos Algorithm to construct each such matrix. This article provides general characterizations and constructions for the complex analogue of periodic Jacobi matrices. As a consequence of the main procedure, we prove that the multiplicity of an eigenvalue of a periodic Jacobi matrix is at most 2.
id RCAP_98ee00200c0e281fc8eedc51bcb8e409
oai_identifier_str oai:estudogeral.uc.pt:10316/11145
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling The inverse eigenvalue problem for Hermitian matrices whose graphs are cyclesInverse eigenvalue problemPeriodic Jacobi matrixEigenvaluesMultiplicitiesGraphsCycleIn 1979, Ferguson characterized the periodic Jacobi matrices with given eigenvalues and showed how to use the Lanzcos Algorithm to construct each such matrix. This article provides general characterizations and constructions for the complex analogue of periodic Jacobi matrices. As a consequence of the main procedure, we prove that the multiplicity of an eigenvalue of a periodic Jacobi matrix is at most 2.Taylor & Francis2008-12-15info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10316/11145http://hdl.handle.net/10316/11145https://doi.org/10.1080/03081080802187870engLinear and Multilinear Algebra. (2008) iFirst0308-1087Fernandes, RosárioFonseca, C. M. dainfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2020-05-25T13:07:31Zoai:estudogeral.uc.pt:10316/11145Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T21:00:46.814347Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv The inverse eigenvalue problem for Hermitian matrices whose graphs are cycles
title The inverse eigenvalue problem for Hermitian matrices whose graphs are cycles
spellingShingle The inverse eigenvalue problem for Hermitian matrices whose graphs are cycles
Fernandes, Rosário
Inverse eigenvalue problem
Periodic Jacobi matrix
Eigenvalues
Multiplicities
Graphs
Cycle
title_short The inverse eigenvalue problem for Hermitian matrices whose graphs are cycles
title_full The inverse eigenvalue problem for Hermitian matrices whose graphs are cycles
title_fullStr The inverse eigenvalue problem for Hermitian matrices whose graphs are cycles
title_full_unstemmed The inverse eigenvalue problem for Hermitian matrices whose graphs are cycles
title_sort The inverse eigenvalue problem for Hermitian matrices whose graphs are cycles
author Fernandes, Rosário
author_facet Fernandes, Rosário
Fonseca, C. M. da
author_role author
author2 Fonseca, C. M. da
author2_role author
dc.contributor.author.fl_str_mv Fernandes, Rosário
Fonseca, C. M. da
dc.subject.por.fl_str_mv Inverse eigenvalue problem
Periodic Jacobi matrix
Eigenvalues
Multiplicities
Graphs
Cycle
topic Inverse eigenvalue problem
Periodic Jacobi matrix
Eigenvalues
Multiplicities
Graphs
Cycle
description In 1979, Ferguson characterized the periodic Jacobi matrices with given eigenvalues and showed how to use the Lanzcos Algorithm to construct each such matrix. This article provides general characterizations and constructions for the complex analogue of periodic Jacobi matrices. As a consequence of the main procedure, we prove that the multiplicity of an eigenvalue of a periodic Jacobi matrix is at most 2.
publishDate 2008
dc.date.none.fl_str_mv 2008-12-15
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10316/11145
http://hdl.handle.net/10316/11145
https://doi.org/10.1080/03081080802187870
url http://hdl.handle.net/10316/11145
https://doi.org/10.1080/03081080802187870
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Linear and Multilinear Algebra. (2008) iFirst
0308-1087
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Taylor & Francis
publisher.none.fl_str_mv Taylor & Francis
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799133898390634496