The inverse eigenvalue problem for Hermitian matrices whose graphs are cycles
Autor(a) principal: | |
---|---|
Data de Publicação: | 2008 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10316/11145 https://doi.org/10.1080/03081080802187870 |
Resumo: | In 1979, Ferguson characterized the periodic Jacobi matrices with given eigenvalues and showed how to use the Lanzcos Algorithm to construct each such matrix. This article provides general characterizations and constructions for the complex analogue of periodic Jacobi matrices. As a consequence of the main procedure, we prove that the multiplicity of an eigenvalue of a periodic Jacobi matrix is at most 2. |
id |
RCAP_98ee00200c0e281fc8eedc51bcb8e409 |
---|---|
oai_identifier_str |
oai:estudogeral.uc.pt:10316/11145 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
The inverse eigenvalue problem for Hermitian matrices whose graphs are cyclesInverse eigenvalue problemPeriodic Jacobi matrixEigenvaluesMultiplicitiesGraphsCycleIn 1979, Ferguson characterized the periodic Jacobi matrices with given eigenvalues and showed how to use the Lanzcos Algorithm to construct each such matrix. This article provides general characterizations and constructions for the complex analogue of periodic Jacobi matrices. As a consequence of the main procedure, we prove that the multiplicity of an eigenvalue of a periodic Jacobi matrix is at most 2.Taylor & Francis2008-12-15info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10316/11145http://hdl.handle.net/10316/11145https://doi.org/10.1080/03081080802187870engLinear and Multilinear Algebra. (2008) iFirst0308-1087Fernandes, RosárioFonseca, C. M. dainfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2020-05-25T13:07:31Zoai:estudogeral.uc.pt:10316/11145Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T21:00:46.814347Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
The inverse eigenvalue problem for Hermitian matrices whose graphs are cycles |
title |
The inverse eigenvalue problem for Hermitian matrices whose graphs are cycles |
spellingShingle |
The inverse eigenvalue problem for Hermitian matrices whose graphs are cycles Fernandes, Rosário Inverse eigenvalue problem Periodic Jacobi matrix Eigenvalues Multiplicities Graphs Cycle |
title_short |
The inverse eigenvalue problem for Hermitian matrices whose graphs are cycles |
title_full |
The inverse eigenvalue problem for Hermitian matrices whose graphs are cycles |
title_fullStr |
The inverse eigenvalue problem for Hermitian matrices whose graphs are cycles |
title_full_unstemmed |
The inverse eigenvalue problem for Hermitian matrices whose graphs are cycles |
title_sort |
The inverse eigenvalue problem for Hermitian matrices whose graphs are cycles |
author |
Fernandes, Rosário |
author_facet |
Fernandes, Rosário Fonseca, C. M. da |
author_role |
author |
author2 |
Fonseca, C. M. da |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Fernandes, Rosário Fonseca, C. M. da |
dc.subject.por.fl_str_mv |
Inverse eigenvalue problem Periodic Jacobi matrix Eigenvalues Multiplicities Graphs Cycle |
topic |
Inverse eigenvalue problem Periodic Jacobi matrix Eigenvalues Multiplicities Graphs Cycle |
description |
In 1979, Ferguson characterized the periodic Jacobi matrices with given eigenvalues and showed how to use the Lanzcos Algorithm to construct each such matrix. This article provides general characterizations and constructions for the complex analogue of periodic Jacobi matrices. As a consequence of the main procedure, we prove that the multiplicity of an eigenvalue of a periodic Jacobi matrix is at most 2. |
publishDate |
2008 |
dc.date.none.fl_str_mv |
2008-12-15 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10316/11145 http://hdl.handle.net/10316/11145 https://doi.org/10.1080/03081080802187870 |
url |
http://hdl.handle.net/10316/11145 https://doi.org/10.1080/03081080802187870 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Linear and Multilinear Algebra. (2008) iFirst 0308-1087 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Taylor & Francis |
publisher.none.fl_str_mv |
Taylor & Francis |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799133898390634496 |