Evaluation of spatial-temporal anomalies in the analysis of human movement

Detalhes bibliográficos
Autor(a) principal: Varandas, Rui Pedro Sousa
Data de Publicação: 2018
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10362/58215
Resumo: The dissemination of Internet of Things solutions, such as smartphones, lead to the appearance of devices that allow to monitor the activities of their users. In manufacture, the performed tasks consist on sets of predetermined movements that are exhaustively repeated, forming a repetitive behaviour. Additionally, there are planned and unplanned events on manufacturing production lines which cause the repetitive behaviour to stop. The execution of improper movements and the existence of events that might prejudice the productive system are regarded as anomalies. In this work, it was investigated the feasibility of the evaluation of spatial-temporal anomaly detection in the analysis of human movement. It is proposed a framework capable of detecting anomalies in generic repetitive time series, thus being adequate to handle Human motion from industrial scenarios. The proposed framework consists of (1) a new unsupervised segmentation algorithm; (2) feature extraction, selection and dimensionality reduction; (3) unsupervised classification based on DBSCAN used to distinguish normal and anomalous instances. The proposed solution was applied in four different datasets. Two of those datasets were synthetic and two were composed of real-world data, namely, electrocardiography data and human movement in manufacture. The yielded results demonstrated not only that anomaly detection in human motion is possible, but that the developed framework is generic and, with examples, it was shown that it may be applied in general repetitive time series with little adaptation effort for different domains. The results showed that the proposed framework has the potential to be applied in manufacturing production lines to monitor the employees movements, acting as a tool to detect both planned and unplanned events, and ultimately reduce the risk of appearance of musculoskeletal disorders in industrial settings in long-term.
id RCAP_99012bd5011d79286e7d2c97b4ee7889
oai_identifier_str oai:run.unl.pt:10362/58215
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Evaluation of spatial-temporal anomalies in the analysis of human movementTime SeriesAnomaly DetectionHuman MotionUnsupervised LearningManufactureDomínio/Área Científica::Ciências Médicas::Outras Ciências MédicasThe dissemination of Internet of Things solutions, such as smartphones, lead to the appearance of devices that allow to monitor the activities of their users. In manufacture, the performed tasks consist on sets of predetermined movements that are exhaustively repeated, forming a repetitive behaviour. Additionally, there are planned and unplanned events on manufacturing production lines which cause the repetitive behaviour to stop. The execution of improper movements and the existence of events that might prejudice the productive system are regarded as anomalies. In this work, it was investigated the feasibility of the evaluation of spatial-temporal anomaly detection in the analysis of human movement. It is proposed a framework capable of detecting anomalies in generic repetitive time series, thus being adequate to handle Human motion from industrial scenarios. The proposed framework consists of (1) a new unsupervised segmentation algorithm; (2) feature extraction, selection and dimensionality reduction; (3) unsupervised classification based on DBSCAN used to distinguish normal and anomalous instances. The proposed solution was applied in four different datasets. Two of those datasets were synthetic and two were composed of real-world data, namely, electrocardiography data and human movement in manufacture. The yielded results demonstrated not only that anomaly detection in human motion is possible, but that the developed framework is generic and, with examples, it was shown that it may be applied in general repetitive time series with little adaptation effort for different domains. The results showed that the proposed framework has the potential to be applied in manufacturing production lines to monitor the employees movements, acting as a tool to detect both planned and unplanned events, and ultimately reduce the risk of appearance of musculoskeletal disorders in industrial settings in long-term.Gamboa, HugoRUNVarandas, Rui Pedro Sousa2019-01-22T11:08:22Z2018-1220182018-12-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/58215enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T04:28:03Zoai:run.unl.pt:10362/58215Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:33:11.136025Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Evaluation of spatial-temporal anomalies in the analysis of human movement
title Evaluation of spatial-temporal anomalies in the analysis of human movement
spellingShingle Evaluation of spatial-temporal anomalies in the analysis of human movement
Varandas, Rui Pedro Sousa
Time Series
Anomaly Detection
Human Motion
Unsupervised Learning
Manufacture
Domínio/Área Científica::Ciências Médicas::Outras Ciências Médicas
title_short Evaluation of spatial-temporal anomalies in the analysis of human movement
title_full Evaluation of spatial-temporal anomalies in the analysis of human movement
title_fullStr Evaluation of spatial-temporal anomalies in the analysis of human movement
title_full_unstemmed Evaluation of spatial-temporal anomalies in the analysis of human movement
title_sort Evaluation of spatial-temporal anomalies in the analysis of human movement
author Varandas, Rui Pedro Sousa
author_facet Varandas, Rui Pedro Sousa
author_role author
dc.contributor.none.fl_str_mv Gamboa, Hugo
RUN
dc.contributor.author.fl_str_mv Varandas, Rui Pedro Sousa
dc.subject.por.fl_str_mv Time Series
Anomaly Detection
Human Motion
Unsupervised Learning
Manufacture
Domínio/Área Científica::Ciências Médicas::Outras Ciências Médicas
topic Time Series
Anomaly Detection
Human Motion
Unsupervised Learning
Manufacture
Domínio/Área Científica::Ciências Médicas::Outras Ciências Médicas
description The dissemination of Internet of Things solutions, such as smartphones, lead to the appearance of devices that allow to monitor the activities of their users. In manufacture, the performed tasks consist on sets of predetermined movements that are exhaustively repeated, forming a repetitive behaviour. Additionally, there are planned and unplanned events on manufacturing production lines which cause the repetitive behaviour to stop. The execution of improper movements and the existence of events that might prejudice the productive system are regarded as anomalies. In this work, it was investigated the feasibility of the evaluation of spatial-temporal anomaly detection in the analysis of human movement. It is proposed a framework capable of detecting anomalies in generic repetitive time series, thus being adequate to handle Human motion from industrial scenarios. The proposed framework consists of (1) a new unsupervised segmentation algorithm; (2) feature extraction, selection and dimensionality reduction; (3) unsupervised classification based on DBSCAN used to distinguish normal and anomalous instances. The proposed solution was applied in four different datasets. Two of those datasets were synthetic and two were composed of real-world data, namely, electrocardiography data and human movement in manufacture. The yielded results demonstrated not only that anomaly detection in human motion is possible, but that the developed framework is generic and, with examples, it was shown that it may be applied in general repetitive time series with little adaptation effort for different domains. The results showed that the proposed framework has the potential to be applied in manufacturing production lines to monitor the employees movements, acting as a tool to detect both planned and unplanned events, and ultimately reduce the risk of appearance of musculoskeletal disorders in industrial settings in long-term.
publishDate 2018
dc.date.none.fl_str_mv 2018-12
2018
2018-12-01T00:00:00Z
2019-01-22T11:08:22Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10362/58215
url http://hdl.handle.net/10362/58215
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137953540210688