Predictive analytics in the petrochemical industry
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10362/98757 |
Resumo: | Dias, T., Oliveira, R., Saraiva, P., & Reis, M. S. (2020). Predictive analytics in the petrochemical industry: Research Octane Number (RON) forecasting and analysis in an industrial catalytic reforming unit. Computers and Chemical Engineering, 139, [106912]. https://doi.org/10.1016/j.compchemeng.2020.106912 |
id |
RCAP_99cb9a305fa5b9f1e305728414f30977 |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/98757 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Predictive analytics in the petrochemical industryResearch Octane Number (RON) forecasting and analysis in an industrial catalytic reforming unitBig DataCatalytic reformingPredictive data analyticsResearch Octane NumberSoft sensorsChemical Engineering(all)Computer Science ApplicationsDias, T., Oliveira, R., Saraiva, P., & Reis, M. S. (2020). Predictive analytics in the petrochemical industry: Research Octane Number (RON) forecasting and analysis in an industrial catalytic reforming unit. Computers and Chemical Engineering, 139, [106912]. https://doi.org/10.1016/j.compchemeng.2020.106912The Research Octane Number (RON) is a key parameter for specifying gasoline quality. It assesses the ability to resist engine knocking as the fuel burns in the combustion chamber. In this work we address the critical but complex problem of predicting RON using real process data in the context of a catalytic reforming process from a petrochemical refinery. We considered data collected from the process over an extended period of time (21 months). RON measurements are obtained offline, by laboratory analysis, with a significant delay and at much lower rates when compared to process measurements. The proposed workflow covers all the way from data collection, cleaning and pre-processing to data-driven modelling, analysis and validation for a real industrial refinery located in Portugal. The accuracy achieved with the best soft sensors open up perspectives for industrial applications and the results obtained also provide relevant information about the main RON variability sources.NOVA Information Management School (NOVA IMS)RUNDias, TiagoOliveira, RodolfoSaraiva, PedroReis, Marco S.2022-05-28T00:31:26Z2020-08-042020-08-04T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article15application/pdfhttp://hdl.handle.net/10362/98757eng0098-1354PURE: 18415725https://doi.org/10.1016/j.compchemeng.2020.106912info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-05-22T17:45:48Zoai:run.unl.pt:10362/98757Portal AgregadorONGhttps://www.rcaap.pt/oai/openairemluisa.alvim@gmail.comopendoar:71602024-05-22T17:45:48Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Predictive analytics in the petrochemical industry Research Octane Number (RON) forecasting and analysis in an industrial catalytic reforming unit |
title |
Predictive analytics in the petrochemical industry |
spellingShingle |
Predictive analytics in the petrochemical industry Dias, Tiago Big Data Catalytic reforming Predictive data analytics Research Octane Number Soft sensors Chemical Engineering(all) Computer Science Applications |
title_short |
Predictive analytics in the petrochemical industry |
title_full |
Predictive analytics in the petrochemical industry |
title_fullStr |
Predictive analytics in the petrochemical industry |
title_full_unstemmed |
Predictive analytics in the petrochemical industry |
title_sort |
Predictive analytics in the petrochemical industry |
author |
Dias, Tiago |
author_facet |
Dias, Tiago Oliveira, Rodolfo Saraiva, Pedro Reis, Marco S. |
author_role |
author |
author2 |
Oliveira, Rodolfo Saraiva, Pedro Reis, Marco S. |
author2_role |
author author author |
dc.contributor.none.fl_str_mv |
NOVA Information Management School (NOVA IMS) RUN |
dc.contributor.author.fl_str_mv |
Dias, Tiago Oliveira, Rodolfo Saraiva, Pedro Reis, Marco S. |
dc.subject.por.fl_str_mv |
Big Data Catalytic reforming Predictive data analytics Research Octane Number Soft sensors Chemical Engineering(all) Computer Science Applications |
topic |
Big Data Catalytic reforming Predictive data analytics Research Octane Number Soft sensors Chemical Engineering(all) Computer Science Applications |
description |
Dias, T., Oliveira, R., Saraiva, P., & Reis, M. S. (2020). Predictive analytics in the petrochemical industry: Research Octane Number (RON) forecasting and analysis in an industrial catalytic reforming unit. Computers and Chemical Engineering, 139, [106912]. https://doi.org/10.1016/j.compchemeng.2020.106912 |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-08-04 2020-08-04T00:00:00Z 2022-05-28T00:31:26Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/98757 |
url |
http://hdl.handle.net/10362/98757 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
0098-1354 PURE: 18415725 https://doi.org/10.1016/j.compchemeng.2020.106912 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
15 application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
mluisa.alvim@gmail.com |
_version_ |
1817545744570122240 |