Data-driven modeling of smart builiding energy management
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10362/132389 |
Resumo: | Buildings consume approximately 40% of energy in total, which contributes negatively to the environment. Building Energy Management Systems(BEMS) have been used to monitor energy consumption and increase usage efficiency. In this study, the components and importance of BEMS are emphasized. The data from the management systemoftheChamchuri5building in Chula long korn University, Thailand, were used as a template for data-driven modeling for energy usage in smart buildings to analyze the patterns of energy consumption. Using multilevel modeling on theChamchuri5 building ,the main factors that consume energy on a macro and micro level are analyzed .Energy variation between zones and floors was spotted. |
id |
RCAP_9a2b0589e9a66a2adca683b59b340243 |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/132389 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Data-driven modeling of smart builiding energy managementMachine learningBusiness and data analyticsEnergy efficiencyEnergy managementSmart buildingsDomínio/Área Científica::Ciências Sociais::Economia e GestãoBuildings consume approximately 40% of energy in total, which contributes negatively to the environment. Building Energy Management Systems(BEMS) have been used to monitor energy consumption and increase usage efficiency. In this study, the components and importance of BEMS are emphasized. The data from the management systemoftheChamchuri5building in Chula long korn University, Thailand, were used as a template for data-driven modeling for energy usage in smart buildings to analyze the patterns of energy consumption. Using multilevel modeling on theChamchuri5 building ,the main factors that consume energy on a macro and micro level are analyzed .Energy variation between zones and floors was spotted.Han, QiweiRUNSalama, Raghda Ahmed Abdelkerim2022-02-07T11:33:52Z2021-06-292021-05-202021-06-29T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/132389TID:202769496enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T05:11:00Zoai:run.unl.pt:10362/132389Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:47:26.027423Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Data-driven modeling of smart builiding energy management |
title |
Data-driven modeling of smart builiding energy management |
spellingShingle |
Data-driven modeling of smart builiding energy management Salama, Raghda Ahmed Abdelkerim Machine learning Business and data analytics Energy efficiency Energy management Smart buildings Domínio/Área Científica::Ciências Sociais::Economia e Gestão |
title_short |
Data-driven modeling of smart builiding energy management |
title_full |
Data-driven modeling of smart builiding energy management |
title_fullStr |
Data-driven modeling of smart builiding energy management |
title_full_unstemmed |
Data-driven modeling of smart builiding energy management |
title_sort |
Data-driven modeling of smart builiding energy management |
author |
Salama, Raghda Ahmed Abdelkerim |
author_facet |
Salama, Raghda Ahmed Abdelkerim |
author_role |
author |
dc.contributor.none.fl_str_mv |
Han, Qiwei RUN |
dc.contributor.author.fl_str_mv |
Salama, Raghda Ahmed Abdelkerim |
dc.subject.por.fl_str_mv |
Machine learning Business and data analytics Energy efficiency Energy management Smart buildings Domínio/Área Científica::Ciências Sociais::Economia e Gestão |
topic |
Machine learning Business and data analytics Energy efficiency Energy management Smart buildings Domínio/Área Científica::Ciências Sociais::Economia e Gestão |
description |
Buildings consume approximately 40% of energy in total, which contributes negatively to the environment. Building Energy Management Systems(BEMS) have been used to monitor energy consumption and increase usage efficiency. In this study, the components and importance of BEMS are emphasized. The data from the management systemoftheChamchuri5building in Chula long korn University, Thailand, were used as a template for data-driven modeling for energy usage in smart buildings to analyze the patterns of energy consumption. Using multilevel modeling on theChamchuri5 building ,the main factors that consume energy on a macro and micro level are analyzed .Energy variation between zones and floors was spotted. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-06-29 2021-05-20 2021-06-29T00:00:00Z 2022-02-07T11:33:52Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/132389 TID:202769496 |
url |
http://hdl.handle.net/10362/132389 |
identifier_str_mv |
TID:202769496 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799138077375987712 |