Development of a Bayesian network-based early warning system for storm-driven coastal erosion

Detalhes bibliográficos
Autor(a) principal: L. Garzon, Juan
Data de Publicação: 2024
Outros Autores: Ferreira, Óscar, Plomaritis, T. A., Zózimo, A. C., Fortes, C. J. E. M., Pinheiro, L. V.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10400.1/20530
Resumo: Coastal hazards such as flooding and erosion can cause large economic and human losses. Under this threat, early warning systems can be very cost-effective solutions for disaster preparation. The goal of this study was to develop, test, and implement an operational coastal erosion early warning system supported by a particular method of machine learning. Thus, the system combines Bayesian Networks, and state-of-the-art numerical models, such as XBeach and SWAN, to predict storm erosion impacts in urbanized areas. This system was developed in two phases. In the development phase, all information required to apply the machine learning method was generated including the definition of hundreds of oceanic synthetic storms, modeling of the erosion caused by these storms, and characterization of the impact levels according to a newly defined eerosion iimpact index. This adimensional index relates the distance from the edge of the dune/beach scarp to buildings and the height of that scarp. Finally, a Bayesian Network that acted as a surrogate of the previously generated information was built. After the training of the network, the conditional probability tables were created. These tables constituted the ground knowledge to make the predictions in the second phase. This methodology was validated (1) by comparing 6-h predictions obtained with the Bayesian Network and with process-based models, the latest considered as the benchmark, and (2) by assessing the predictive skills of the Bayesian Network through the unbiased iterative k-fold cross-validation procedure. Regarding the first comparison, the analysis considered the entire duration of three large storms whose return periods were 10, 16, and 25 years, and it was observed that the Bayesian Network correctly predicted between 64% and 72% of the impacts during the course of the storms, depending on the area analyzed. Importantly, this method was also able to identify when the hazardous conditions disappeared after predicting potential consequences. Regarding the Regarding the second validation approach, second validation approach, the k-fold cross-validation procedure was applied to the peak of a set of varying storms and it demonstrated that the predictive skills were maximized (63%-72%) when including three nodes as input conditions of the Bayesian Network. In the operational phase, the system was integrated into the architecture of a forecast and early warning system that predicts emergencies in coastal and port zones in Portugal, and the alerts are issued to authorities every day. This study demonstrated that the two-phase approach developed here can provide fast and high-accuracy predictions of erosion impacts. Also, this methodology can be easily implemented on other sandy beaches constituting a powerful tool for disaster management.
id RCAP_9a34cca8be852f0de8c4e6dace1ea4ef
oai_identifier_str oai:sapientia.ualg.pt:10400.1/20530
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Development of a Bayesian network-based early warning system for storm-driven coastal erosionPrediction systemNumerical modelingBayesian networksSandy beachesHIDRALERTACoastal hazards such as flooding and erosion can cause large economic and human losses. Under this threat, early warning systems can be very cost-effective solutions for disaster preparation. The goal of this study was to develop, test, and implement an operational coastal erosion early warning system supported by a particular method of machine learning. Thus, the system combines Bayesian Networks, and state-of-the-art numerical models, such as XBeach and SWAN, to predict storm erosion impacts in urbanized areas. This system was developed in two phases. In the development phase, all information required to apply the machine learning method was generated including the definition of hundreds of oceanic synthetic storms, modeling of the erosion caused by these storms, and characterization of the impact levels according to a newly defined eerosion iimpact index. This adimensional index relates the distance from the edge of the dune/beach scarp to buildings and the height of that scarp. Finally, a Bayesian Network that acted as a surrogate of the previously generated information was built. After the training of the network, the conditional probability tables were created. These tables constituted the ground knowledge to make the predictions in the second phase. This methodology was validated (1) by comparing 6-h predictions obtained with the Bayesian Network and with process-based models, the latest considered as the benchmark, and (2) by assessing the predictive skills of the Bayesian Network through the unbiased iterative k-fold cross-validation procedure. Regarding the first comparison, the analysis considered the entire duration of three large storms whose return periods were 10, 16, and 25 years, and it was observed that the Bayesian Network correctly predicted between 64% and 72% of the impacts during the course of the storms, depending on the area analyzed. Importantly, this method was also able to identify when the hazardous conditions disappeared after predicting potential consequences. Regarding the Regarding the second validation approach, second validation approach, the k-fold cross-validation procedure was applied to the peak of a set of varying storms and it demonstrated that the predictive skills were maximized (63%-72%) when including three nodes as input conditions of the Bayesian Network. In the operational phase, the system was integrated into the architecture of a forecast and early warning system that predicts emergencies in coastal and port zones in Portugal, and the alerts are issued to authorities every day. This study demonstrated that the two-phase approach developed here can provide fast and high-accuracy predictions of erosion impacts. Also, this methodology can be easily implemented on other sandy beaches constituting a powerful tool for disaster management.ElsevierSapientiaL. Garzon, JuanFerreira, ÓscarPlomaritis, T. A.Zózimo, A. C.Fortes, C. J. E. M.Pinheiro, L. V.2024-03-21T11:10:40Z20242024-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.1/20530eng0378-383910.1016/j.coastaleng.2024.104460info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-11-29T10:50:06Zoai:sapientia.ualg.pt:10400.1/20530Portal AgregadorONGhttps://www.rcaap.pt/oai/openairemluisa.alvim@gmail.comopendoar:71602024-11-29T10:50:06Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Development of a Bayesian network-based early warning system for storm-driven coastal erosion
title Development of a Bayesian network-based early warning system for storm-driven coastal erosion
spellingShingle Development of a Bayesian network-based early warning system for storm-driven coastal erosion
L. Garzon, Juan
Prediction system
Numerical modeling
Bayesian networks
Sandy beaches
HIDRALERTA
title_short Development of a Bayesian network-based early warning system for storm-driven coastal erosion
title_full Development of a Bayesian network-based early warning system for storm-driven coastal erosion
title_fullStr Development of a Bayesian network-based early warning system for storm-driven coastal erosion
title_full_unstemmed Development of a Bayesian network-based early warning system for storm-driven coastal erosion
title_sort Development of a Bayesian network-based early warning system for storm-driven coastal erosion
author L. Garzon, Juan
author_facet L. Garzon, Juan
Ferreira, Óscar
Plomaritis, T. A.
Zózimo, A. C.
Fortes, C. J. E. M.
Pinheiro, L. V.
author_role author
author2 Ferreira, Óscar
Plomaritis, T. A.
Zózimo, A. C.
Fortes, C. J. E. M.
Pinheiro, L. V.
author2_role author
author
author
author
author
dc.contributor.none.fl_str_mv Sapientia
dc.contributor.author.fl_str_mv L. Garzon, Juan
Ferreira, Óscar
Plomaritis, T. A.
Zózimo, A. C.
Fortes, C. J. E. M.
Pinheiro, L. V.
dc.subject.por.fl_str_mv Prediction system
Numerical modeling
Bayesian networks
Sandy beaches
HIDRALERTA
topic Prediction system
Numerical modeling
Bayesian networks
Sandy beaches
HIDRALERTA
description Coastal hazards such as flooding and erosion can cause large economic and human losses. Under this threat, early warning systems can be very cost-effective solutions for disaster preparation. The goal of this study was to develop, test, and implement an operational coastal erosion early warning system supported by a particular method of machine learning. Thus, the system combines Bayesian Networks, and state-of-the-art numerical models, such as XBeach and SWAN, to predict storm erosion impacts in urbanized areas. This system was developed in two phases. In the development phase, all information required to apply the machine learning method was generated including the definition of hundreds of oceanic synthetic storms, modeling of the erosion caused by these storms, and characterization of the impact levels according to a newly defined eerosion iimpact index. This adimensional index relates the distance from the edge of the dune/beach scarp to buildings and the height of that scarp. Finally, a Bayesian Network that acted as a surrogate of the previously generated information was built. After the training of the network, the conditional probability tables were created. These tables constituted the ground knowledge to make the predictions in the second phase. This methodology was validated (1) by comparing 6-h predictions obtained with the Bayesian Network and with process-based models, the latest considered as the benchmark, and (2) by assessing the predictive skills of the Bayesian Network through the unbiased iterative k-fold cross-validation procedure. Regarding the first comparison, the analysis considered the entire duration of three large storms whose return periods were 10, 16, and 25 years, and it was observed that the Bayesian Network correctly predicted between 64% and 72% of the impacts during the course of the storms, depending on the area analyzed. Importantly, this method was also able to identify when the hazardous conditions disappeared after predicting potential consequences. Regarding the Regarding the second validation approach, second validation approach, the k-fold cross-validation procedure was applied to the peak of a set of varying storms and it demonstrated that the predictive skills were maximized (63%-72%) when including three nodes as input conditions of the Bayesian Network. In the operational phase, the system was integrated into the architecture of a forecast and early warning system that predicts emergencies in coastal and port zones in Portugal, and the alerts are issued to authorities every day. This study demonstrated that the two-phase approach developed here can provide fast and high-accuracy predictions of erosion impacts. Also, this methodology can be easily implemented on other sandy beaches constituting a powerful tool for disaster management.
publishDate 2024
dc.date.none.fl_str_mv 2024-03-21T11:10:40Z
2024
2024-01-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.1/20530
url http://hdl.handle.net/10400.1/20530
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 0378-3839
10.1016/j.coastaleng.2024.104460
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv mluisa.alvim@gmail.com
_version_ 1817549832117551104