Analysis of financial data series using fractional Fourier transform and multidimensional scaling
Autor(a) principal: | |
---|---|
Data de Publicação: | 2011 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10400.22/4082 |
Resumo: | The goal of this study is the analysis of the dynamical properties of financial data series from worldwide stock market indexes during the period 2000–2009. We analyze, under a regional criterium, ten main indexes at a daily time horizon. The methods and algorithms that have been explored for the description of dynamical phenomena become an effective background in the analysis of economical data. We start by applying the classical concepts of signal analysis, fractional Fourier transform, and methods of fractional calculus. In a second phase we adopt the multidimensional scaling approach. Stock market indexes are examples of complex interacting systems for which a huge amount of data exists. Therefore, these indexes, viewed from a different perspectives, lead to new classification patterns. |
id |
RCAP_9a865381e53fd9e9aa5580dcf014edeb |
---|---|
oai_identifier_str |
oai:recipp.ipp.pt:10400.22/4082 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Analysis of financial data series using fractional Fourier transform and multidimensional scalingFinancial data seriesFractional Fourier transformMultidimensional scalingFractional calculusThe goal of this study is the analysis of the dynamical properties of financial data series from worldwide stock market indexes during the period 2000–2009. We analyze, under a regional criterium, ten main indexes at a daily time horizon. The methods and algorithms that have been explored for the description of dynamical phenomena become an effective background in the analysis of economical data. We start by applying the classical concepts of signal analysis, fractional Fourier transform, and methods of fractional calculus. In a second phase we adopt the multidimensional scaling approach. Stock market indexes are examples of complex interacting systems for which a huge amount of data exists. Therefore, these indexes, viewed from a different perspectives, lead to new classification patterns.SpringerRepositório Científico do Instituto Politécnico do PortoMachado, J. A. TenreiroDuarte, Fernando B.Duarte, Gonçalo Monteiro2014-02-28T09:34:52Z20112011-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.22/4082eng0924-090X10.1007/s11071-010-9885-1info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-03-13T12:44:04Zoai:recipp.ipp.pt:10400.22/4082Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T17:25:02.095628Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Analysis of financial data series using fractional Fourier transform and multidimensional scaling |
title |
Analysis of financial data series using fractional Fourier transform and multidimensional scaling |
spellingShingle |
Analysis of financial data series using fractional Fourier transform and multidimensional scaling Machado, J. A. Tenreiro Financial data series Fractional Fourier transform Multidimensional scaling Fractional calculus |
title_short |
Analysis of financial data series using fractional Fourier transform and multidimensional scaling |
title_full |
Analysis of financial data series using fractional Fourier transform and multidimensional scaling |
title_fullStr |
Analysis of financial data series using fractional Fourier transform and multidimensional scaling |
title_full_unstemmed |
Analysis of financial data series using fractional Fourier transform and multidimensional scaling |
title_sort |
Analysis of financial data series using fractional Fourier transform and multidimensional scaling |
author |
Machado, J. A. Tenreiro |
author_facet |
Machado, J. A. Tenreiro Duarte, Fernando B. Duarte, Gonçalo Monteiro |
author_role |
author |
author2 |
Duarte, Fernando B. Duarte, Gonçalo Monteiro |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
Repositório Científico do Instituto Politécnico do Porto |
dc.contributor.author.fl_str_mv |
Machado, J. A. Tenreiro Duarte, Fernando B. Duarte, Gonçalo Monteiro |
dc.subject.por.fl_str_mv |
Financial data series Fractional Fourier transform Multidimensional scaling Fractional calculus |
topic |
Financial data series Fractional Fourier transform Multidimensional scaling Fractional calculus |
description |
The goal of this study is the analysis of the dynamical properties of financial data series from worldwide stock market indexes during the period 2000–2009. We analyze, under a regional criterium, ten main indexes at a daily time horizon. The methods and algorithms that have been explored for the description of dynamical phenomena become an effective background in the analysis of economical data. We start by applying the classical concepts of signal analysis, fractional Fourier transform, and methods of fractional calculus. In a second phase we adopt the multidimensional scaling approach. Stock market indexes are examples of complex interacting systems for which a huge amount of data exists. Therefore, these indexes, viewed from a different perspectives, lead to new classification patterns. |
publishDate |
2011 |
dc.date.none.fl_str_mv |
2011 2011-01-01T00:00:00Z 2014-02-28T09:34:52Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.22/4082 |
url |
http://hdl.handle.net/10400.22/4082 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
0924-090X 10.1007/s11071-010-9885-1 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799131343506898944 |