Metalearning approach for leukemia informative genes prioritization

Detalhes bibliográficos
Autor(a) principal: Rodrigues, Vânia
Data de Publicação: 2018
Outros Autores: Deusdado, Sérgio
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10198/23416
Resumo: The discovery of diagnostic or prognostic biomarkers is fundamental to optimize therapeutics for patients. By enhancing the interpretability of the prediction model, this work is aimed to optimize Leukemia diagnosis while retaining a high-performance evaluation in the identification of informative genes. For this purpose, we used an optimal parameterization of Kernel Logistic Regression method on Leukemia microarray gene expression data classification, applying metalearners to select attributes, reducing the data dimensionality before passing it to the classifier. Pearson correlation and chi-squared statistic were the attribute evaluators applied on metalearners, having information gain as single-attribute evaluator. The implemented models relied on 10-fold cross-validation. The metalearners approach identified 12 common genes, with highest average merit of 0.999. The practical work was developed using the public datamining software WEKA.
id RCAP_9ac24fd36ff9165bb5bff012f795e8f8
oai_identifier_str oai:bibliotecadigital.ipb.pt:10198/23416
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Metalearning approach for leukemia informative genes prioritizationinformative genesleukemiamachine learningmetalearningmicroarrayThe discovery of diagnostic or prognostic biomarkers is fundamental to optimize therapeutics for patients. By enhancing the interpretability of the prediction model, this work is aimed to optimize Leukemia diagnosis while retaining a high-performance evaluation in the identification of informative genes. For this purpose, we used an optimal parameterization of Kernel Logistic Regression method on Leukemia microarray gene expression data classification, applying metalearners to select attributes, reducing the data dimensionality before passing it to the classifier. Pearson correlation and chi-squared statistic were the attribute evaluators applied on metalearners, having information gain as single-attribute evaluator. The implemented models relied on 10-fold cross-validation. The metalearners approach identified 12 common genes, with highest average merit of 0.999. The practical work was developed using the public datamining software WEKA.Biblioteca Digital do IPBRodrigues, VâniaDeusdado, Sérgio2018-01-19T10:00:00Z20202020-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10198/23416engRodrigues, Vânia; Deusdado, Sérgio (2020). Metalearning approach for leukemia informative genes prioritization. Journal of integrative bioinformatics. ISSN 1613-4516. 17:1, p. 1-710.1515/jib-2019-0069info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-21T10:52:21Zoai:bibliotecadigital.ipb.pt:10198/23416Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T23:14:24.881398Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Metalearning approach for leukemia informative genes prioritization
title Metalearning approach for leukemia informative genes prioritization
spellingShingle Metalearning approach for leukemia informative genes prioritization
Rodrigues, Vânia
informative genes
leukemia
machine learning
metalearning
microarray
title_short Metalearning approach for leukemia informative genes prioritization
title_full Metalearning approach for leukemia informative genes prioritization
title_fullStr Metalearning approach for leukemia informative genes prioritization
title_full_unstemmed Metalearning approach for leukemia informative genes prioritization
title_sort Metalearning approach for leukemia informative genes prioritization
author Rodrigues, Vânia
author_facet Rodrigues, Vânia
Deusdado, Sérgio
author_role author
author2 Deusdado, Sérgio
author2_role author
dc.contributor.none.fl_str_mv Biblioteca Digital do IPB
dc.contributor.author.fl_str_mv Rodrigues, Vânia
Deusdado, Sérgio
dc.subject.por.fl_str_mv informative genes
leukemia
machine learning
metalearning
microarray
topic informative genes
leukemia
machine learning
metalearning
microarray
description The discovery of diagnostic or prognostic biomarkers is fundamental to optimize therapeutics for patients. By enhancing the interpretability of the prediction model, this work is aimed to optimize Leukemia diagnosis while retaining a high-performance evaluation in the identification of informative genes. For this purpose, we used an optimal parameterization of Kernel Logistic Regression method on Leukemia microarray gene expression data classification, applying metalearners to select attributes, reducing the data dimensionality before passing it to the classifier. Pearson correlation and chi-squared statistic were the attribute evaluators applied on metalearners, having information gain as single-attribute evaluator. The implemented models relied on 10-fold cross-validation. The metalearners approach identified 12 common genes, with highest average merit of 0.999. The practical work was developed using the public datamining software WEKA.
publishDate 2018
dc.date.none.fl_str_mv 2018-01-19T10:00:00Z
2020
2020-01-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10198/23416
url http://hdl.handle.net/10198/23416
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Rodrigues, Vânia; Deusdado, Sérgio (2020). Metalearning approach for leukemia informative genes prioritization. Journal of integrative bioinformatics. ISSN 1613-4516. 17:1, p. 1-7
10.1515/jib-2019-0069
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799135423347294208