Metalearning approach for leukemia informative genes prioritization
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10198/23416 |
Resumo: | The discovery of diagnostic or prognostic biomarkers is fundamental to optimize therapeutics for patients. By enhancing the interpretability of the prediction model, this work is aimed to optimize Leukemia diagnosis while retaining a high-performance evaluation in the identification of informative genes. For this purpose, we used an optimal parameterization of Kernel Logistic Regression method on Leukemia microarray gene expression data classification, applying metalearners to select attributes, reducing the data dimensionality before passing it to the classifier. Pearson correlation and chi-squared statistic were the attribute evaluators applied on metalearners, having information gain as single-attribute evaluator. The implemented models relied on 10-fold cross-validation. The metalearners approach identified 12 common genes, with highest average merit of 0.999. The practical work was developed using the public datamining software WEKA. |
id |
RCAP_9ac24fd36ff9165bb5bff012f795e8f8 |
---|---|
oai_identifier_str |
oai:bibliotecadigital.ipb.pt:10198/23416 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Metalearning approach for leukemia informative genes prioritizationinformative genesleukemiamachine learningmetalearningmicroarrayThe discovery of diagnostic or prognostic biomarkers is fundamental to optimize therapeutics for patients. By enhancing the interpretability of the prediction model, this work is aimed to optimize Leukemia diagnosis while retaining a high-performance evaluation in the identification of informative genes. For this purpose, we used an optimal parameterization of Kernel Logistic Regression method on Leukemia microarray gene expression data classification, applying metalearners to select attributes, reducing the data dimensionality before passing it to the classifier. Pearson correlation and chi-squared statistic were the attribute evaluators applied on metalearners, having information gain as single-attribute evaluator. The implemented models relied on 10-fold cross-validation. The metalearners approach identified 12 common genes, with highest average merit of 0.999. The practical work was developed using the public datamining software WEKA.Biblioteca Digital do IPBRodrigues, VâniaDeusdado, Sérgio2018-01-19T10:00:00Z20202020-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10198/23416engRodrigues, Vânia; Deusdado, Sérgio (2020). Metalearning approach for leukemia informative genes prioritization. Journal of integrative bioinformatics. ISSN 1613-4516. 17:1, p. 1-710.1515/jib-2019-0069info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-21T10:52:21Zoai:bibliotecadigital.ipb.pt:10198/23416Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T23:14:24.881398Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Metalearning approach for leukemia informative genes prioritization |
title |
Metalearning approach for leukemia informative genes prioritization |
spellingShingle |
Metalearning approach for leukemia informative genes prioritization Rodrigues, Vânia informative genes leukemia machine learning metalearning microarray |
title_short |
Metalearning approach for leukemia informative genes prioritization |
title_full |
Metalearning approach for leukemia informative genes prioritization |
title_fullStr |
Metalearning approach for leukemia informative genes prioritization |
title_full_unstemmed |
Metalearning approach for leukemia informative genes prioritization |
title_sort |
Metalearning approach for leukemia informative genes prioritization |
author |
Rodrigues, Vânia |
author_facet |
Rodrigues, Vânia Deusdado, Sérgio |
author_role |
author |
author2 |
Deusdado, Sérgio |
author2_role |
author |
dc.contributor.none.fl_str_mv |
Biblioteca Digital do IPB |
dc.contributor.author.fl_str_mv |
Rodrigues, Vânia Deusdado, Sérgio |
dc.subject.por.fl_str_mv |
informative genes leukemia machine learning metalearning microarray |
topic |
informative genes leukemia machine learning metalearning microarray |
description |
The discovery of diagnostic or prognostic biomarkers is fundamental to optimize therapeutics for patients. By enhancing the interpretability of the prediction model, this work is aimed to optimize Leukemia diagnosis while retaining a high-performance evaluation in the identification of informative genes. For this purpose, we used an optimal parameterization of Kernel Logistic Regression method on Leukemia microarray gene expression data classification, applying metalearners to select attributes, reducing the data dimensionality before passing it to the classifier. Pearson correlation and chi-squared statistic were the attribute evaluators applied on metalearners, having information gain as single-attribute evaluator. The implemented models relied on 10-fold cross-validation. The metalearners approach identified 12 common genes, with highest average merit of 0.999. The practical work was developed using the public datamining software WEKA. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-01-19T10:00:00Z 2020 2020-01-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10198/23416 |
url |
http://hdl.handle.net/10198/23416 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Rodrigues, Vânia; Deusdado, Sérgio (2020). Metalearning approach for leukemia informative genes prioritization. Journal of integrative bioinformatics. ISSN 1613-4516. 17:1, p. 1-7 10.1515/jib-2019-0069 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799135423347294208 |