Effect of rapid thermal processing conditions on the properties of Cu2ZnSnS4 thin films and solar cell performance
Autor(a) principal: | |
---|---|
Data de Publicação: | 2014 |
Outros Autores: | , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10400.22/13092 |
Resumo: | In the present work, we have studied the effect of several sulphurization conditions on the properties of Cu2ZnSnS4 thin films obtained through rapid thermal processing (RTP) of multi-period precursors with 8 periods of Zn/SnS2/CuS. In this study we varied the heating rate, the maximum sulphurization temperature, the time at maximum temperature and the amount of evaporated sulphur. The samples were characterized through scanning electron microscopy, energy dispersive spectroscopy, Raman scattering spectroscopy, X-ray diffraction, photoluminescence and I–V measurements. We have observed that at heating rates above 0.5 1C/s the samples delaminated severely. As a result further tests were carried out at 0.2 1C/s heating rate. The morphological studies revealed that the samples sulphurized at higher temperatures, shorter times and higher amount of evaporated sulphur exhibited larger grain sizes. The structural analysis based on Raman scattering and XRD did not lead to a clear distinction between the samples. Photoluminescence spectroscopy studies showed an asymmetric broad band characteristic of CZTS, which occurs in the range of 1.0–1.4 eV and a second band, on the high energy side of the previous one, peaking at around 1.41 eV. The intensity of this latter band varies from sample to sample revealing substantial differences in their optical properties. This band appears to originate either from the surface of the absorber or from the CdS layer and has a clear correlation with cell efficiency. The higher the intensity of this band the lower the cell efficiency, presumably due to the increase in recombination resulting from CZTS surface decomposition and eventually from the CdS with modified optoelectronic properties. The cell results hint toward a detrimental effect of long sulphuriza-tion times and a positive effect of higher sulphur vapour pressure and higher sulphurization temperature. Solar cell efficiencies improved with increased grain size in the absorber layer. The highest cell efficiency obtained in this study was 3.1%. |
id |
RCAP_9aeff2991b8e9071e3c179c1d067cc10 |
---|---|
oai_identifier_str |
oai:recipp.ipp.pt:10400.22/13092 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Effect of rapid thermal processing conditions on the properties of Cu2ZnSnS4 thin films and solar cell performanceKesteritesCu2ZnSnS4RF-magnetron sputteringRapid thermal processing (RTP)In the present work, we have studied the effect of several sulphurization conditions on the properties of Cu2ZnSnS4 thin films obtained through rapid thermal processing (RTP) of multi-period precursors with 8 periods of Zn/SnS2/CuS. In this study we varied the heating rate, the maximum sulphurization temperature, the time at maximum temperature and the amount of evaporated sulphur. The samples were characterized through scanning electron microscopy, energy dispersive spectroscopy, Raman scattering spectroscopy, X-ray diffraction, photoluminescence and I–V measurements. We have observed that at heating rates above 0.5 1C/s the samples delaminated severely. As a result further tests were carried out at 0.2 1C/s heating rate. The morphological studies revealed that the samples sulphurized at higher temperatures, shorter times and higher amount of evaporated sulphur exhibited larger grain sizes. The structural analysis based on Raman scattering and XRD did not lead to a clear distinction between the samples. Photoluminescence spectroscopy studies showed an asymmetric broad band characteristic of CZTS, which occurs in the range of 1.0–1.4 eV and a second band, on the high energy side of the previous one, peaking at around 1.41 eV. The intensity of this latter band varies from sample to sample revealing substantial differences in their optical properties. This band appears to originate either from the surface of the absorber or from the CdS layer and has a clear correlation with cell efficiency. The higher the intensity of this band the lower the cell efficiency, presumably due to the increase in recombination resulting from CZTS surface decomposition and eventually from the CdS with modified optoelectronic properties. The cell results hint toward a detrimental effect of long sulphuriza-tion times and a positive effect of higher sulphur vapour pressure and higher sulphurization temperature. Solar cell efficiencies improved with increased grain size in the absorber layer. The highest cell efficiency obtained in this study was 3.1%.ElsevierRepositório Científico do Instituto Politécnico do PortoSousa, M. G.Cunha, A. F. daFernandes, P. A.Teixeira, J.P.Sousa, R.A.Leitão, J.P2019-03-21T14:57:08Z20142014-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.22/13092eng0927-024810.1016/j.solmat.2014.03.043info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-03-13T12:51:42Zoai:recipp.ipp.pt:10400.22/13092Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T17:30:38.413773Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Effect of rapid thermal processing conditions on the properties of Cu2ZnSnS4 thin films and solar cell performance |
title |
Effect of rapid thermal processing conditions on the properties of Cu2ZnSnS4 thin films and solar cell performance |
spellingShingle |
Effect of rapid thermal processing conditions on the properties of Cu2ZnSnS4 thin films and solar cell performance Sousa, M. G. Kesterites Cu2ZnSnS4 RF-magnetron sputtering Rapid thermal processing (RTP) |
title_short |
Effect of rapid thermal processing conditions on the properties of Cu2ZnSnS4 thin films and solar cell performance |
title_full |
Effect of rapid thermal processing conditions on the properties of Cu2ZnSnS4 thin films and solar cell performance |
title_fullStr |
Effect of rapid thermal processing conditions on the properties of Cu2ZnSnS4 thin films and solar cell performance |
title_full_unstemmed |
Effect of rapid thermal processing conditions on the properties of Cu2ZnSnS4 thin films and solar cell performance |
title_sort |
Effect of rapid thermal processing conditions on the properties of Cu2ZnSnS4 thin films and solar cell performance |
author |
Sousa, M. G. |
author_facet |
Sousa, M. G. Cunha, A. F. da Fernandes, P. A. Teixeira, J.P. Sousa, R.A. Leitão, J.P |
author_role |
author |
author2 |
Cunha, A. F. da Fernandes, P. A. Teixeira, J.P. Sousa, R.A. Leitão, J.P |
author2_role |
author author author author author |
dc.contributor.none.fl_str_mv |
Repositório Científico do Instituto Politécnico do Porto |
dc.contributor.author.fl_str_mv |
Sousa, M. G. Cunha, A. F. da Fernandes, P. A. Teixeira, J.P. Sousa, R.A. Leitão, J.P |
dc.subject.por.fl_str_mv |
Kesterites Cu2ZnSnS4 RF-magnetron sputtering Rapid thermal processing (RTP) |
topic |
Kesterites Cu2ZnSnS4 RF-magnetron sputtering Rapid thermal processing (RTP) |
description |
In the present work, we have studied the effect of several sulphurization conditions on the properties of Cu2ZnSnS4 thin films obtained through rapid thermal processing (RTP) of multi-period precursors with 8 periods of Zn/SnS2/CuS. In this study we varied the heating rate, the maximum sulphurization temperature, the time at maximum temperature and the amount of evaporated sulphur. The samples were characterized through scanning electron microscopy, energy dispersive spectroscopy, Raman scattering spectroscopy, X-ray diffraction, photoluminescence and I–V measurements. We have observed that at heating rates above 0.5 1C/s the samples delaminated severely. As a result further tests were carried out at 0.2 1C/s heating rate. The morphological studies revealed that the samples sulphurized at higher temperatures, shorter times and higher amount of evaporated sulphur exhibited larger grain sizes. The structural analysis based on Raman scattering and XRD did not lead to a clear distinction between the samples. Photoluminescence spectroscopy studies showed an asymmetric broad band characteristic of CZTS, which occurs in the range of 1.0–1.4 eV and a second band, on the high energy side of the previous one, peaking at around 1.41 eV. The intensity of this latter band varies from sample to sample revealing substantial differences in their optical properties. This band appears to originate either from the surface of the absorber or from the CdS layer and has a clear correlation with cell efficiency. The higher the intensity of this band the lower the cell efficiency, presumably due to the increase in recombination resulting from CZTS surface decomposition and eventually from the CdS with modified optoelectronic properties. The cell results hint toward a detrimental effect of long sulphuriza-tion times and a positive effect of higher sulphur vapour pressure and higher sulphurization temperature. Solar cell efficiencies improved with increased grain size in the absorber layer. The highest cell efficiency obtained in this study was 3.1%. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014 2014-01-01T00:00:00Z 2019-03-21T14:57:08Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.22/13092 |
url |
http://hdl.handle.net/10400.22/13092 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
0927-0248 10.1016/j.solmat.2014.03.043 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799131401766830080 |