Introduction to the Selected Papers from ICCPS 2016

Detalhes bibliográficos
Autor(a) principal: Tovar, Eduardo
Data de Publicação: 2018
Outros Autores: Martinez, Sonia
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10400.22/12539
Resumo: Since their inception more than a decade ago, terms such as “cyber-physical systems” (CPS) or “cooperating objects” have come to describe research and engineering efforts that tightly conjoin real-world physical processes and computing systems. The integration of physical processes and computing is not new; embedded computing systems have been in place for decades controlling physical processes. The revolution is steaming from the extensive networking of embedded computing devices and the holistic cyber-physical co-design that integrates sensing, actuation, computation, networking, and physical processes. Such systems pose many broad scientific and technical challenges, ranging from distributed programming paradigms to networking protocols, as well as systems theory that combines physical models and networked embedded systems. Notably, as the physical interactions imply that timing requirements are considered, real-time computing systems methodologies and technologies are also pivotal in many of those systems. Moreover, many of these systems are often safety-critical, and therefore it is fundamental to guarantee other nonfunctional properties (such as safety, security, and reliability), which often interplay among them and with timeliness requirements. CPS is a growing key strategic research, development, and innovation area, and it is becoming pivotal for boosting the development of the future generation of highly complex and automated computing systems, which will be pervasive in virtually all application domains. Notable examples are aeronautics, aerospace and defence systems, robotics, autonomous transportation systems, the Internet of Things, energy-aware and green computing, smart factory automation, smart grids, and advanced medical devices and applications. This special issue contains a selection of extended versions of the best papers presented at the Seventh ACM/IEEE International Conference on Cyber-Physical Systems (ICCPS 2016), which was held with the Cyber-Physical Systems Week in Vienna, Austria, on 11–14 April 2016. This selection reflects effectively the growing pervasiveness of these systems in various applications domains. These papers excel at describing the diversity of methodologies used to design and verify various non-functional properties of these complex systems.
id RCAP_9b194d9d8f8b1b752bc9b74eeed5d20f
oai_identifier_str oai:recipp.ipp.pt:10400.22/12539
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Introduction to the Selected Papers from ICCPS 2016Since their inception more than a decade ago, terms such as “cyber-physical systems” (CPS) or “cooperating objects” have come to describe research and engineering efforts that tightly conjoin real-world physical processes and computing systems. The integration of physical processes and computing is not new; embedded computing systems have been in place for decades controlling physical processes. The revolution is steaming from the extensive networking of embedded computing devices and the holistic cyber-physical co-design that integrates sensing, actuation, computation, networking, and physical processes. Such systems pose many broad scientific and technical challenges, ranging from distributed programming paradigms to networking protocols, as well as systems theory that combines physical models and networked embedded systems. Notably, as the physical interactions imply that timing requirements are considered, real-time computing systems methodologies and technologies are also pivotal in many of those systems. Moreover, many of these systems are often safety-critical, and therefore it is fundamental to guarantee other nonfunctional properties (such as safety, security, and reliability), which often interplay among them and with timeliness requirements. CPS is a growing key strategic research, development, and innovation area, and it is becoming pivotal for boosting the development of the future generation of highly complex and automated computing systems, which will be pervasive in virtually all application domains. Notable examples are aeronautics, aerospace and defence systems, robotics, autonomous transportation systems, the Internet of Things, energy-aware and green computing, smart factory automation, smart grids, and advanced medical devices and applications. This special issue contains a selection of extended versions of the best papers presented at the Seventh ACM/IEEE International Conference on Cyber-Physical Systems (ICCPS 2016), which was held with the Cyber-Physical Systems Week in Vienna, Austria, on 11–14 April 2016. This selection reflects effectively the growing pervasiveness of these systems in various applications domains. These papers excel at describing the diversity of methodologies used to design and verify various non-functional properties of these complex systems.Association for Computing MachineryRepositório Científico do Instituto Politécnico do PortoTovar, EduardoMartinez, Sonia2019-01-04T15:05:57Z20182018-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.22/12539eng2378-962X10.1145/3179997info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-03-13T12:54:28Zoai:recipp.ipp.pt:10400.22/12539Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T17:32:48.546844Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Introduction to the Selected Papers from ICCPS 2016
title Introduction to the Selected Papers from ICCPS 2016
spellingShingle Introduction to the Selected Papers from ICCPS 2016
Tovar, Eduardo
title_short Introduction to the Selected Papers from ICCPS 2016
title_full Introduction to the Selected Papers from ICCPS 2016
title_fullStr Introduction to the Selected Papers from ICCPS 2016
title_full_unstemmed Introduction to the Selected Papers from ICCPS 2016
title_sort Introduction to the Selected Papers from ICCPS 2016
author Tovar, Eduardo
author_facet Tovar, Eduardo
Martinez, Sonia
author_role author
author2 Martinez, Sonia
author2_role author
dc.contributor.none.fl_str_mv Repositório Científico do Instituto Politécnico do Porto
dc.contributor.author.fl_str_mv Tovar, Eduardo
Martinez, Sonia
description Since their inception more than a decade ago, terms such as “cyber-physical systems” (CPS) or “cooperating objects” have come to describe research and engineering efforts that tightly conjoin real-world physical processes and computing systems. The integration of physical processes and computing is not new; embedded computing systems have been in place for decades controlling physical processes. The revolution is steaming from the extensive networking of embedded computing devices and the holistic cyber-physical co-design that integrates sensing, actuation, computation, networking, and physical processes. Such systems pose many broad scientific and technical challenges, ranging from distributed programming paradigms to networking protocols, as well as systems theory that combines physical models and networked embedded systems. Notably, as the physical interactions imply that timing requirements are considered, real-time computing systems methodologies and technologies are also pivotal in many of those systems. Moreover, many of these systems are often safety-critical, and therefore it is fundamental to guarantee other nonfunctional properties (such as safety, security, and reliability), which often interplay among them and with timeliness requirements. CPS is a growing key strategic research, development, and innovation area, and it is becoming pivotal for boosting the development of the future generation of highly complex and automated computing systems, which will be pervasive in virtually all application domains. Notable examples are aeronautics, aerospace and defence systems, robotics, autonomous transportation systems, the Internet of Things, energy-aware and green computing, smart factory automation, smart grids, and advanced medical devices and applications. This special issue contains a selection of extended versions of the best papers presented at the Seventh ACM/IEEE International Conference on Cyber-Physical Systems (ICCPS 2016), which was held with the Cyber-Physical Systems Week in Vienna, Austria, on 11–14 April 2016. This selection reflects effectively the growing pervasiveness of these systems in various applications domains. These papers excel at describing the diversity of methodologies used to design and verify various non-functional properties of these complex systems.
publishDate 2018
dc.date.none.fl_str_mv 2018
2018-01-01T00:00:00Z
2019-01-04T15:05:57Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.22/12539
url http://hdl.handle.net/10400.22/12539
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 2378-962X
10.1145/3179997
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Association for Computing Machinery
publisher.none.fl_str_mv Association for Computing Machinery
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799131421099425792