Prostate lesion segmentation with convolutional neural networks
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10451/48386 |
Resumo: | Tese de mestrado integrado em Engenharia Biomédica e Biofísica (Engenharia Clínica e Instrumentação Médica), Universidade de Lisboa, Faculdade de Ciências, 2020 |
id |
RCAP_9b9533653cc9e228506495aa86971483 |
---|---|
oai_identifier_str |
oai:repositorio.ul.pt:10451/48386 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Prostate lesion segmentation with convolutional neural networksCancroDeep LearningRessonância MagnéticaSegmentaçãoU-NetTeses de mestrado - 2020Domínio/Área Científica::Engenharia e Tecnologia::Engenharia MédicaTese de mestrado integrado em Engenharia Biomédica e Biofísica (Engenharia Clínica e Instrumentação Médica), Universidade de Lisboa, Faculdade de Ciências, 2020O cancro da próstata é o segundo tipo de cancro não cutâneo com maior incidência nos homens em todo o mundo, a seguir ao cancro do pulmão. Em Portugal, de acordo com a Associação Portuguesa de Urologia, esta doença representa, aproximadamente, 3,5% de todas as mortes nacionais, assim como 10% das mortes relacionadas com cancro. Para além destes dados, o Global Cancer Observatory, estima que a probabilidade de um homem ocidental ser diagnosticado ao longo da sua vida com cancro da próstata é de 8,1%. As causas diretas que levam ao aparecimento deste tipo de cancro ainda não estão totalmente clarificadas, no entanto, os hábitos alimentares, o estilo de vida e o ambiente em redor desempenham um fator preponderante no desencadeamento desta patologia. A deteção inicial deste cancro ocorre, normalmente, através de exames retais de rotina, ou através de alterações significativas do antigénio prostático específico detetáveis em análises ao sangue. De seguida, para confirmação e localização do possível tumor, podem ser adotados três procedimentos: ecografia transrectal, colheita de uma biópsia local ou análise de imagem prostática através de ressonância magnética. Por ser o procedimento menos invasivo, a ressonância magnética é a ferramenta mais utilizada para deteção e localização de lesões na próstata. No Hospital da Luz de Lisboa, a análise de imagens provenientes de ressonância magnética multi-paramétrica é o procedimento padrão para a localização de lesões prostáticas. Neste exame, geralmente, são adquiridas três sequências em T2, uma em cada um dos planos axial, coronal e sagital, duas sequências com difusão e uma sequência emT1. Cada exame demora, aproximadamente, 45minutos a ser analisado corretamente pelo radiologista. Após a análise, é atribuída uma classificação ao estado do paciente, de T1 a T4, sendo que até T2 o tumor ainda se encontra exclusivamente no interior da próstata e em T4 apresenta os maiores índices de disseminação em redor da próstata. Esta classificação é preponderante para o planeamento da cirurgia de remoção do tumor. Nesta avaliação, é normalmente identificada a lesão ”índex” da próstata, que corresponde à lesão com maior índice cancerígenae, por isso, a mais visível. No entanto, podem em certos casos existir lesões de menor dimensão ou de menor relevância, lesões ”não-índex”, que em determinadas circunstâncias levam à alteração da classificação do estado do paciente. Este tipo de lesões, por vezes, não é facilmente localizado e o procedimento cirúrgico resultante acaba por não ser o mais indicado e gerar, no futuro, reincidências. Até T2, a prostatectomia deve ser realizada com o intuito de remover apenas a lesão ou a próstata por completo, no entanto, em T3 e em T4, a abordagem deve ser um pouco mais severa, sendo necessário também remover camadas celulares fora da próstata como margem de segurança para evitar uma reincidência. A introdução de algoritmos de inteligência artificial no ramo da medicina, com o propósito de realizar tarefas como segmentação, classificação e deteção de artefactos em imagens digitais, tem sido cada vez mais preponderante na evolução tecnológica da saúde. No panorama geral da medicina, os métodos de avaliação automatizada permitem executar tarefas com maior rapidez, precisão e assertividade face à capacidade humana, sendo possível explorar numa imagem, por exemplo, texturas, formas, estruturas e até mesmo orientações nucleares de certos artefactos. Relativamente ao cancro da próstata, para além de algoritmos que visam auxiliar as avaliações promovidas pela anatomia patológica, o grande foco centra-se em melhorar os métodos de análise de imagem de ressonância, por forma a tornar os diagnósticos mais precisos. Assim sendo, a criação de algoritmos que permitam a segmentação das lesões prostáticas, assim como respetiva ponderação da classificação do estado do paciente, revela-se como a tarefa principal na evolução do diagnóstico do cancro da próstata. Desta forma, como objetivo de otimizar a deteção e localização das lesões prostáticas, esta dissertação apresenta um conjunto de algoritmos que visam a segmentação de lesões da próstata em imagens de ressonância magnética. O projeto foi desenvolvido no centro de formação e investigação LearningHealth, no Hospital da Luz de Lisboa, e apresenta duas etapas principais: a criação do modelo de segmentação da próstata e a elaboração do modelo de segmentação das lesões prostáticas. Na fase inicial desta dissertação, a criação de um modelo que segmentasse a zona da próstata, por forma a aumentar, posteriormente, a área de deteção das lesões, foi identificado como o primeiro passo. Com base em modelos de deep learning, mais especificamente através de convolutional neuralnetworks, foi desenvolvida uma arquitetura para o propósito anteriormente descrito. Esta arquitetura, baseada numa rede já previamente construída, a U-Net, apresenta características específicas que permitem a entrada de imagens de ressonância magnética da próstata, slice a slice, a gestão da informação que essas imagens apresentam e, por fim, a criação de máscaras binárias da zona da próstata consoante a slice de entrada. Com as máscaras da zona prostática, foi possível delinear um contorno e promover uma sub-seleção dessa zona na imagem original, criando volumes onde a área de deteção das lesões da próstata é isolada. Na segunda fase deste projeto, foi criado um modelo para segmentar diretamente as lesões da próstata. Para tal, foram utilizadas as imagens adquiridas após a primeira parte do projeto, assim como a rede identificada para localizar a próstata. Contudo, esta arquitetura sofreu alterações estruturais, por forma a otimizar o rendimento do modelo. Ao contrário da rede anterior, esta arquitetura permite a entrada de duas imagens na mesma instância, a original T2 e a respetiva original ADC. No final, o output é, igualmente, uma máscara binária, desta vez localizando as lesões da próstata em imagens de ressonância. Em ambos os modelos, foram utilizadas como imagens de input, casos de ressonância magnética adquiridos no Hospital da Luz de Lisboa. Para este processo final, foi necessário segmentar manualmente tanto a próstata, como as respetivas lesões, nas imagens do hospital. Para tal, utilizou-se um software hospitalar, o Multi-Parametric Analysis, que permite o registo das imagens originais e a elaboração das máscaras manualmente. Este processo de identificação e elaboração manual das máscaras da próstata e das lesões foi realizado por uma radiologista do Hospital da Luz de Lisboa, a Dra. Adalgisa Guerra. O modelo desenvolvido na primeira etapa, para a segmentação da próstata, apresentou um valor de Dice Similarity Coefficient, a principal métrica de avaliação em projetos de segmentação, de 0,88. Este valor é semelhante aos valores de referência destacados no state oftheart. Após a conclusão desta etapa, criaram-se cinco modelos para segmentar as lesões da próstata, sendo que o modelo que apresentou melhores resultados foi o que tinha como input as imagens ampliadas da próstata em T2 e ADC e as respetivas máscaras das lesões criadas em imagensT2. O resultado final deste modelo em termos de Dice Similarity Coefficient foi de 0,76, Hausdorff Distance de 20,2mm e Mean Square Distance de 2,1 mm. Este resultado realça o impacto que a informação combinada de duas sequências consegue ter no processo de segmentação de lesões da próstata. Concluindo, a medicina, em consonância com as restantes áreas da sociedade, está a evoluir e a inteligência artificial terá um papel preponderante nessa transição. Neste caso, esta dissertação pretende otimizar a metodologia utilizada num hospital local, conferindo aos profissionais de saúde cada vez mais e melhores condições para realizarem as suas tarefas.Silva, Nuno André Inácio Rodrigues da,1989-Conceição, RaquelRepositório da Universidade de LisboaVenâncio, Luís Miguel Teixeira Faria2021-06-07T17:35:48Z202020202020-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10451/48386TID:202607054enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-08T16:51:46Zoai:repositorio.ul.pt:10451/48386Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T22:00:17.610707Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Prostate lesion segmentation with convolutional neural networks |
title |
Prostate lesion segmentation with convolutional neural networks |
spellingShingle |
Prostate lesion segmentation with convolutional neural networks Venâncio, Luís Miguel Teixeira Faria Cancro Deep Learning Ressonância Magnética Segmentação U-Net Teses de mestrado - 2020 Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Médica |
title_short |
Prostate lesion segmentation with convolutional neural networks |
title_full |
Prostate lesion segmentation with convolutional neural networks |
title_fullStr |
Prostate lesion segmentation with convolutional neural networks |
title_full_unstemmed |
Prostate lesion segmentation with convolutional neural networks |
title_sort |
Prostate lesion segmentation with convolutional neural networks |
author |
Venâncio, Luís Miguel Teixeira Faria |
author_facet |
Venâncio, Luís Miguel Teixeira Faria |
author_role |
author |
dc.contributor.none.fl_str_mv |
Silva, Nuno André Inácio Rodrigues da,1989- Conceição, Raquel Repositório da Universidade de Lisboa |
dc.contributor.author.fl_str_mv |
Venâncio, Luís Miguel Teixeira Faria |
dc.subject.por.fl_str_mv |
Cancro Deep Learning Ressonância Magnética Segmentação U-Net Teses de mestrado - 2020 Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Médica |
topic |
Cancro Deep Learning Ressonância Magnética Segmentação U-Net Teses de mestrado - 2020 Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Médica |
description |
Tese de mestrado integrado em Engenharia Biomédica e Biofísica (Engenharia Clínica e Instrumentação Médica), Universidade de Lisboa, Faculdade de Ciências, 2020 |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020 2020 2020-01-01T00:00:00Z 2021-06-07T17:35:48Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10451/48386 TID:202607054 |
url |
http://hdl.handle.net/10451/48386 |
identifier_str_mv |
TID:202607054 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799134549987295232 |