Proteins and their peptide motifs in acellular apatite mineralization of scaffolds for tissue engineering

Detalhes bibliográficos
Autor(a) principal: Benesch, Johan
Data de Publicação: 2008
Outros Autores: Mano, J. F., Reis, R. L.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/1822/20247
Resumo: Many proteins in the inorganic=organic matrix of bone induce or modulate or inhibit mineralization of apatite in vivo. Many attempts have been made to mimic and understand this mechanism as part of bone formation, and ectopic mineralization and control thereof. Many attempts have also been made to use such proteins or protein fragments to harness their potential for improved mineralization. Such proteins and peptide motifs have also been the inspiration for attempts of making mimics of their structures and motifs using chemical or biological synthesis. The aim of this review is to highlight how proteins and (poly)peptides themselves impact mineralization in the human body, and how those could be used and have been used for improving apatite mineralization, for example, on or in materials that by themselves do not induce apatite mineralization but otherwise have interesting properties for use as bone tissue engineering scaffolds.
id RCAP_9bdcbf45bdae2fdb02511404bcb8eb36
oai_identifier_str oai:repositorium.sdum.uminho.pt:1822/20247
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Proteins and their peptide motifs in acellular apatite mineralization of scaffolds for tissue engineeringScience & TechnologyMany proteins in the inorganic=organic matrix of bone induce or modulate or inhibit mineralization of apatite in vivo. Many attempts have been made to mimic and understand this mechanism as part of bone formation, and ectopic mineralization and control thereof. Many attempts have also been made to use such proteins or protein fragments to harness their potential for improved mineralization. Such proteins and peptide motifs have also been the inspiration for attempts of making mimics of their structures and motifs using chemical or biological synthesis. The aim of this review is to highlight how proteins and (poly)peptides themselves impact mineralization in the human body, and how those could be used and have been used for improving apatite mineralization, for example, on or in materials that by themselves do not induce apatite mineralization but otherwise have interesting properties for use as bone tissue engineering scaffolds.J. Benesch wishes to acknowledge the financial support from FCT, postdoctoral fellowship scholarship SFRH/BPD/17584/2004. This work was carried out under the scope of the European Union NoE EXPERTISSUES (NMP3-CT-2004500283) and partially funded by the European Union FP6 STREP Project HIPPOCRATES (NMP3-CT-2003-505758) and FCT project ProteoLight (PTDC/FIS/68517/2006).Mary Ann LiebertUniversidade do MinhoBenesch, JohanMano, J. F.Reis, R. L.20082008-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/1822/20247eng2152-494710.1089/ten.teb.2008.012118826338info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-21T12:43:08Zoai:repositorium.sdum.uminho.pt:1822/20247Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T19:40:32.504991Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Proteins and their peptide motifs in acellular apatite mineralization of scaffolds for tissue engineering
title Proteins and their peptide motifs in acellular apatite mineralization of scaffolds for tissue engineering
spellingShingle Proteins and their peptide motifs in acellular apatite mineralization of scaffolds for tissue engineering
Benesch, Johan
Science & Technology
title_short Proteins and their peptide motifs in acellular apatite mineralization of scaffolds for tissue engineering
title_full Proteins and their peptide motifs in acellular apatite mineralization of scaffolds for tissue engineering
title_fullStr Proteins and their peptide motifs in acellular apatite mineralization of scaffolds for tissue engineering
title_full_unstemmed Proteins and their peptide motifs in acellular apatite mineralization of scaffolds for tissue engineering
title_sort Proteins and their peptide motifs in acellular apatite mineralization of scaffolds for tissue engineering
author Benesch, Johan
author_facet Benesch, Johan
Mano, J. F.
Reis, R. L.
author_role author
author2 Mano, J. F.
Reis, R. L.
author2_role author
author
dc.contributor.none.fl_str_mv Universidade do Minho
dc.contributor.author.fl_str_mv Benesch, Johan
Mano, J. F.
Reis, R. L.
dc.subject.por.fl_str_mv Science & Technology
topic Science & Technology
description Many proteins in the inorganic=organic matrix of bone induce or modulate or inhibit mineralization of apatite in vivo. Many attempts have been made to mimic and understand this mechanism as part of bone formation, and ectopic mineralization and control thereof. Many attempts have also been made to use such proteins or protein fragments to harness their potential for improved mineralization. Such proteins and peptide motifs have also been the inspiration for attempts of making mimics of their structures and motifs using chemical or biological synthesis. The aim of this review is to highlight how proteins and (poly)peptides themselves impact mineralization in the human body, and how those could be used and have been used for improving apatite mineralization, for example, on or in materials that by themselves do not induce apatite mineralization but otherwise have interesting properties for use as bone tissue engineering scaffolds.
publishDate 2008
dc.date.none.fl_str_mv 2008
2008-01-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/1822/20247
url http://hdl.handle.net/1822/20247
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 2152-4947
10.1089/ten.teb.2008.0121
18826338
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Mary Ann Liebert
publisher.none.fl_str_mv Mary Ann Liebert
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799132950972858368