An explicit high order method for fractional advection diffusion equations

Detalhes bibliográficos
Autor(a) principal: Sousa, Ercília
Data de Publicação: 2014
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10316/27768
https://doi.org/10.1016/j.jcp.2014.08.036
Resumo: We propose a high order explicit finite difference method for fractional advection diffusion equations. These equations can be obtained from the standard advection diffusion equations by replacing the second order spatial derivative by a fractional operator of order α with 1<α≤2. This operator is defined by a combination of the left and right Riemann–Liouville fractional derivatives. We study the convergence of the numerical method through consistency and stability. The order of convergence varies between two and three and for advection dominated flows is close to three. Although the method is conditionally stable, the restrictions allow wide stability regions. The analysis is confirmed by numerical examples.
id RCAP_9c637316831b5e2e8a7ce165aec09110
oai_identifier_str oai:estudogeral.uc.pt:10316/27768
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling An explicit high order method for fractional advection diffusion equationsHigher order methodsFractional differential equationsFinite differencesAdvection diffusion equationsWe propose a high order explicit finite difference method for fractional advection diffusion equations. These equations can be obtained from the standard advection diffusion equations by replacing the second order spatial derivative by a fractional operator of order α with 1<α≤2. This operator is defined by a combination of the left and right Riemann–Liouville fractional derivatives. We study the convergence of the numerical method through consistency and stability. The order of convergence varies between two and three and for advection dominated flows is close to three. Although the method is conditionally stable, the restrictions allow wide stability regions. The analysis is confirmed by numerical examples.Elsevier2014-12-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10316/27768http://hdl.handle.net/10316/27768https://doi.org/10.1016/j.jcp.2014.08.036engSOUSA, Ercília - An explicit high order method for fractional advection diffusion equations. "Journal of Computational Physics". ISSN 0021-9991. Vol. 278 (2014) p. 257–2740021-9991http://www.sciencedirect.com/science/article/pii/S0021999114006044Sousa, Ercíliainfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2020-05-25T13:08:18Zoai:estudogeral.uc.pt:10316/27768Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T20:53:21.221032Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv An explicit high order method for fractional advection diffusion equations
title An explicit high order method for fractional advection diffusion equations
spellingShingle An explicit high order method for fractional advection diffusion equations
Sousa, Ercília
Higher order methods
Fractional differential equations
Finite differences
Advection diffusion equations
title_short An explicit high order method for fractional advection diffusion equations
title_full An explicit high order method for fractional advection diffusion equations
title_fullStr An explicit high order method for fractional advection diffusion equations
title_full_unstemmed An explicit high order method for fractional advection diffusion equations
title_sort An explicit high order method for fractional advection diffusion equations
author Sousa, Ercília
author_facet Sousa, Ercília
author_role author
dc.contributor.author.fl_str_mv Sousa, Ercília
dc.subject.por.fl_str_mv Higher order methods
Fractional differential equations
Finite differences
Advection diffusion equations
topic Higher order methods
Fractional differential equations
Finite differences
Advection diffusion equations
description We propose a high order explicit finite difference method for fractional advection diffusion equations. These equations can be obtained from the standard advection diffusion equations by replacing the second order spatial derivative by a fractional operator of order α with 1<α≤2. This operator is defined by a combination of the left and right Riemann–Liouville fractional derivatives. We study the convergence of the numerical method through consistency and stability. The order of convergence varies between two and three and for advection dominated flows is close to three. Although the method is conditionally stable, the restrictions allow wide stability regions. The analysis is confirmed by numerical examples.
publishDate 2014
dc.date.none.fl_str_mv 2014-12-01
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10316/27768
http://hdl.handle.net/10316/27768
https://doi.org/10.1016/j.jcp.2014.08.036
url http://hdl.handle.net/10316/27768
https://doi.org/10.1016/j.jcp.2014.08.036
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv SOUSA, Ercília - An explicit high order method for fractional advection diffusion equations. "Journal of Computational Physics". ISSN 0021-9991. Vol. 278 (2014) p. 257–274
0021-9991
http://www.sciencedirect.com/science/article/pii/S0021999114006044
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799133820674375680