An explicit high order method for fractional advection diffusion equations
Autor(a) principal: | |
---|---|
Data de Publicação: | 2014 |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10316/27768 https://doi.org/10.1016/j.jcp.2014.08.036 |
Resumo: | We propose a high order explicit finite difference method for fractional advection diffusion equations. These equations can be obtained from the standard advection diffusion equations by replacing the second order spatial derivative by a fractional operator of order α with 1<α≤2. This operator is defined by a combination of the left and right Riemann–Liouville fractional derivatives. We study the convergence of the numerical method through consistency and stability. The order of convergence varies between two and three and for advection dominated flows is close to three. Although the method is conditionally stable, the restrictions allow wide stability regions. The analysis is confirmed by numerical examples. |
id |
RCAP_9c637316831b5e2e8a7ce165aec09110 |
---|---|
oai_identifier_str |
oai:estudogeral.uc.pt:10316/27768 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
An explicit high order method for fractional advection diffusion equationsHigher order methodsFractional differential equationsFinite differencesAdvection diffusion equationsWe propose a high order explicit finite difference method for fractional advection diffusion equations. These equations can be obtained from the standard advection diffusion equations by replacing the second order spatial derivative by a fractional operator of order α with 1<α≤2. This operator is defined by a combination of the left and right Riemann–Liouville fractional derivatives. We study the convergence of the numerical method through consistency and stability. The order of convergence varies between two and three and for advection dominated flows is close to three. Although the method is conditionally stable, the restrictions allow wide stability regions. The analysis is confirmed by numerical examples.Elsevier2014-12-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10316/27768http://hdl.handle.net/10316/27768https://doi.org/10.1016/j.jcp.2014.08.036engSOUSA, Ercília - An explicit high order method for fractional advection diffusion equations. "Journal of Computational Physics". ISSN 0021-9991. Vol. 278 (2014) p. 257–2740021-9991http://www.sciencedirect.com/science/article/pii/S0021999114006044Sousa, Ercíliainfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2020-05-25T13:08:18Zoai:estudogeral.uc.pt:10316/27768Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T20:53:21.221032Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
An explicit high order method for fractional advection diffusion equations |
title |
An explicit high order method for fractional advection diffusion equations |
spellingShingle |
An explicit high order method for fractional advection diffusion equations Sousa, Ercília Higher order methods Fractional differential equations Finite differences Advection diffusion equations |
title_short |
An explicit high order method for fractional advection diffusion equations |
title_full |
An explicit high order method for fractional advection diffusion equations |
title_fullStr |
An explicit high order method for fractional advection diffusion equations |
title_full_unstemmed |
An explicit high order method for fractional advection diffusion equations |
title_sort |
An explicit high order method for fractional advection diffusion equations |
author |
Sousa, Ercília |
author_facet |
Sousa, Ercília |
author_role |
author |
dc.contributor.author.fl_str_mv |
Sousa, Ercília |
dc.subject.por.fl_str_mv |
Higher order methods Fractional differential equations Finite differences Advection diffusion equations |
topic |
Higher order methods Fractional differential equations Finite differences Advection diffusion equations |
description |
We propose a high order explicit finite difference method for fractional advection diffusion equations. These equations can be obtained from the standard advection diffusion equations by replacing the second order spatial derivative by a fractional operator of order α with 1<α≤2. This operator is defined by a combination of the left and right Riemann–Liouville fractional derivatives. We study the convergence of the numerical method through consistency and stability. The order of convergence varies between two and three and for advection dominated flows is close to three. Although the method is conditionally stable, the restrictions allow wide stability regions. The analysis is confirmed by numerical examples. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-12-01 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10316/27768 http://hdl.handle.net/10316/27768 https://doi.org/10.1016/j.jcp.2014.08.036 |
url |
http://hdl.handle.net/10316/27768 https://doi.org/10.1016/j.jcp.2014.08.036 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
SOUSA, Ercília - An explicit high order method for fractional advection diffusion equations. "Journal of Computational Physics". ISSN 0021-9991. Vol. 278 (2014) p. 257–274 0021-9991 http://www.sciencedirect.com/science/article/pii/S0021999114006044 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799133820674375680 |