Breaking Wave Height Estimation from Timex Images: Two Methods for Coastal Video Monitoring Systems
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10316/106658 https://doi.org/10.3390/rs12020204 |
Resumo: | The breaking wave height is a crucial parameter for coastal studies but direct measurements constitute a di cult task due to logistical and technical constraints. This paper presents two new practical methods for estimating the breaking wave height from digital images collected by shore-based video monitoring systems. Both methods use time-exposure (Timex) images and exploit the cross-shore length (LHs) of the typical time-averaged signature of breaking wave foam. The first method (Hsb,v) combines LHs and a series of video-derived parameters with the beach profile elevation to obtain the breaking wave height through an empirical formulation. The second method (Hsb,v24) is based on the empirical finding that LHs can be associated with the local water depth at breaking, thus it can be used to estimate the breaking wave height without the requirement of local bathymetry. Both methods were applied and verified against field data collected at the Portuguese Atlantic coast over two days using video acquired by an online-streaming surfcam. Furthermore, Hsb,v24 was applied on coastal images acquired at four additional field sites during distinct hydrodynamic conditions, and the results were compared to a series of di erent wave sources. Achievements suggest that Hsb,v method represents a good alternative to numerical hydrodynamic modeling when local bathymetry is available. In fact, the di erences against modeled breaking wave height, ranging from 1 to 3 m at the case study, returned a root-mean-square-error of 0.2 m. The Hsb,v24 method, when applied on video data collected at five sites, assessed a normalized root-mean-square-error of 18% on average, for dataset of about 900 records and breaking wave height ranging between 0.1 and 3.8 m. These di erences demonstrate the potential of Hsb,v24 in estimating breaking wave height merely using Timex images, with the main advantage of not requiring the beach profile. Both methods can be easily implemented as cost-e ective tools for hydrodynamic applications in the operational coastal video systems worldwide. In addition, the methods have the potential to be coupled to the numerous other Timex applications for morphodynamic studies. |
id |
RCAP_9cb575de5aee4343e11ebbdc2bc411e5 |
---|---|
oai_identifier_str |
oai:estudogeral.uc.pt:10316/106658 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Breaking Wave Height Estimation from Timex Images: Two Methods for Coastal Video Monitoring Systemsnearshorehydrodynamicsdigital imagebeachsurf zonebarfield studyThe breaking wave height is a crucial parameter for coastal studies but direct measurements constitute a di cult task due to logistical and technical constraints. This paper presents two new practical methods for estimating the breaking wave height from digital images collected by shore-based video monitoring systems. Both methods use time-exposure (Timex) images and exploit the cross-shore length (LHs) of the typical time-averaged signature of breaking wave foam. The first method (Hsb,v) combines LHs and a series of video-derived parameters with the beach profile elevation to obtain the breaking wave height through an empirical formulation. The second method (Hsb,v24) is based on the empirical finding that LHs can be associated with the local water depth at breaking, thus it can be used to estimate the breaking wave height without the requirement of local bathymetry. Both methods were applied and verified against field data collected at the Portuguese Atlantic coast over two days using video acquired by an online-streaming surfcam. Furthermore, Hsb,v24 was applied on coastal images acquired at four additional field sites during distinct hydrodynamic conditions, and the results were compared to a series of di erent wave sources. Achievements suggest that Hsb,v method represents a good alternative to numerical hydrodynamic modeling when local bathymetry is available. In fact, the di erences against modeled breaking wave height, ranging from 1 to 3 m at the case study, returned a root-mean-square-error of 0.2 m. The Hsb,v24 method, when applied on video data collected at five sites, assessed a normalized root-mean-square-error of 18% on average, for dataset of about 900 records and breaking wave height ranging between 0.1 and 3.8 m. These di erences demonstrate the potential of Hsb,v24 in estimating breaking wave height merely using Timex images, with the main advantage of not requiring the beach profile. Both methods can be easily implemented as cost-e ective tools for hydrodynamic applications in the operational coastal video systems worldwide. In addition, the methods have the potential to be coupled to the numerous other Timex applications for morphodynamic studies.MDPI2020info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10316/106658http://hdl.handle.net/10316/106658https://doi.org/10.3390/rs12020204eng2072-4292Andriolo, UmbertoMendes, DiogoTaborda, Ruiinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-04-14T09:18:01Zoai:estudogeral.uc.pt:10316/106658Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T21:23:04.595234Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Breaking Wave Height Estimation from Timex Images: Two Methods for Coastal Video Monitoring Systems |
title |
Breaking Wave Height Estimation from Timex Images: Two Methods for Coastal Video Monitoring Systems |
spellingShingle |
Breaking Wave Height Estimation from Timex Images: Two Methods for Coastal Video Monitoring Systems Andriolo, Umberto nearshore hydrodynamics digital image beach surf zone bar field study |
title_short |
Breaking Wave Height Estimation from Timex Images: Two Methods for Coastal Video Monitoring Systems |
title_full |
Breaking Wave Height Estimation from Timex Images: Two Methods for Coastal Video Monitoring Systems |
title_fullStr |
Breaking Wave Height Estimation from Timex Images: Two Methods for Coastal Video Monitoring Systems |
title_full_unstemmed |
Breaking Wave Height Estimation from Timex Images: Two Methods for Coastal Video Monitoring Systems |
title_sort |
Breaking Wave Height Estimation from Timex Images: Two Methods for Coastal Video Monitoring Systems |
author |
Andriolo, Umberto |
author_facet |
Andriolo, Umberto Mendes, Diogo Taborda, Rui |
author_role |
author |
author2 |
Mendes, Diogo Taborda, Rui |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Andriolo, Umberto Mendes, Diogo Taborda, Rui |
dc.subject.por.fl_str_mv |
nearshore hydrodynamics digital image beach surf zone bar field study |
topic |
nearshore hydrodynamics digital image beach surf zone bar field study |
description |
The breaking wave height is a crucial parameter for coastal studies but direct measurements constitute a di cult task due to logistical and technical constraints. This paper presents two new practical methods for estimating the breaking wave height from digital images collected by shore-based video monitoring systems. Both methods use time-exposure (Timex) images and exploit the cross-shore length (LHs) of the typical time-averaged signature of breaking wave foam. The first method (Hsb,v) combines LHs and a series of video-derived parameters with the beach profile elevation to obtain the breaking wave height through an empirical formulation. The second method (Hsb,v24) is based on the empirical finding that LHs can be associated with the local water depth at breaking, thus it can be used to estimate the breaking wave height without the requirement of local bathymetry. Both methods were applied and verified against field data collected at the Portuguese Atlantic coast over two days using video acquired by an online-streaming surfcam. Furthermore, Hsb,v24 was applied on coastal images acquired at four additional field sites during distinct hydrodynamic conditions, and the results were compared to a series of di erent wave sources. Achievements suggest that Hsb,v method represents a good alternative to numerical hydrodynamic modeling when local bathymetry is available. In fact, the di erences against modeled breaking wave height, ranging from 1 to 3 m at the case study, returned a root-mean-square-error of 0.2 m. The Hsb,v24 method, when applied on video data collected at five sites, assessed a normalized root-mean-square-error of 18% on average, for dataset of about 900 records and breaking wave height ranging between 0.1 and 3.8 m. These di erences demonstrate the potential of Hsb,v24 in estimating breaking wave height merely using Timex images, with the main advantage of not requiring the beach profile. Both methods can be easily implemented as cost-e ective tools for hydrodynamic applications in the operational coastal video systems worldwide. In addition, the methods have the potential to be coupled to the numerous other Timex applications for morphodynamic studies. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10316/106658 http://hdl.handle.net/10316/106658 https://doi.org/10.3390/rs12020204 |
url |
http://hdl.handle.net/10316/106658 https://doi.org/10.3390/rs12020204 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
2072-4292 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
MDPI |
publisher.none.fl_str_mv |
MDPI |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799134118768803840 |