Improving Convolutional Neural Network Design via Variable Neighborhood Search

Detalhes bibliográficos
Autor(a) principal: Araujo, T
Data de Publicação: 2017
Outros Autores: Aresta, G, Bernardo Almada Lobo, Ana Maria Mendonça, Aurélio Campilho
Tipo de documento: Livro
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: https://hdl.handle.net/10216/112010
Resumo: An unsupervised method for convolutional neural network (CNN) architecture design is proposed. The method relies on a variable neighborhood search-based approach for finding CNN architectures and hyperparameter values that improve classification performance. For this purpose, t-Distributed Stochastic Neighbor Embedding (t-SNE) is applied to effectively represent the solution space in 2D. Then, k-Means clustering divides this representation space having in account the relative distance between neighbors. The algorithm is tested in the CIFAR-10 image dataset. The obtained solution improves the CNN validation loss by over 15% and the respective accuracy by 5%. Moreover, the network shows higher predictive power and robustness, validating our method for the optimization of CNN design. (c) Springer International Publishing AG 2017.
id RCAP_9cd91715688da65a8975901a1803ab3e
oai_identifier_str oai:repositorio-aberto.up.pt:10216/112010
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Improving Convolutional Neural Network Design via Variable Neighborhood SearchAn unsupervised method for convolutional neural network (CNN) architecture design is proposed. The method relies on a variable neighborhood search-based approach for finding CNN architectures and hyperparameter values that improve classification performance. For this purpose, t-Distributed Stochastic Neighbor Embedding (t-SNE) is applied to effectively represent the solution space in 2D. Then, k-Means clustering divides this representation space having in account the relative distance between neighbors. The algorithm is tested in the CIFAR-10 image dataset. The obtained solution improves the CNN validation loss by over 15% and the respective accuracy by 5%. Moreover, the network shows higher predictive power and robustness, validating our method for the optimization of CNN design. (c) Springer International Publishing AG 2017.20172017-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/bookapplication/pdfhttps://hdl.handle.net/10216/112010eng10.1007/978-3-319-59876-5_41Araujo, TAresta, GBernardo Almada LoboAna Maria MendonçaAurélio Campilhoinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-29T15:36:47Zoai:repositorio-aberto.up.pt:10216/112010Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T00:27:43.091228Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Improving Convolutional Neural Network Design via Variable Neighborhood Search
title Improving Convolutional Neural Network Design via Variable Neighborhood Search
spellingShingle Improving Convolutional Neural Network Design via Variable Neighborhood Search
Araujo, T
title_short Improving Convolutional Neural Network Design via Variable Neighborhood Search
title_full Improving Convolutional Neural Network Design via Variable Neighborhood Search
title_fullStr Improving Convolutional Neural Network Design via Variable Neighborhood Search
title_full_unstemmed Improving Convolutional Neural Network Design via Variable Neighborhood Search
title_sort Improving Convolutional Neural Network Design via Variable Neighborhood Search
author Araujo, T
author_facet Araujo, T
Aresta, G
Bernardo Almada Lobo
Ana Maria Mendonça
Aurélio Campilho
author_role author
author2 Aresta, G
Bernardo Almada Lobo
Ana Maria Mendonça
Aurélio Campilho
author2_role author
author
author
author
dc.contributor.author.fl_str_mv Araujo, T
Aresta, G
Bernardo Almada Lobo
Ana Maria Mendonça
Aurélio Campilho
description An unsupervised method for convolutional neural network (CNN) architecture design is proposed. The method relies on a variable neighborhood search-based approach for finding CNN architectures and hyperparameter values that improve classification performance. For this purpose, t-Distributed Stochastic Neighbor Embedding (t-SNE) is applied to effectively represent the solution space in 2D. Then, k-Means clustering divides this representation space having in account the relative distance between neighbors. The algorithm is tested in the CIFAR-10 image dataset. The obtained solution improves the CNN validation loss by over 15% and the respective accuracy by 5%. Moreover, the network shows higher predictive power and robustness, validating our method for the optimization of CNN design. (c) Springer International Publishing AG 2017.
publishDate 2017
dc.date.none.fl_str_mv 2017
2017-01-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/book
format book
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://hdl.handle.net/10216/112010
url https://hdl.handle.net/10216/112010
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1007/978-3-319-59876-5_41
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799136189391831040