Stability of principal components under normal and non-normal parent populations and different covariance structures scenarios
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10362/162154 |
Resumo: | Funding Information: This work is funded by national funds through the FCT–Fundação para a Ciência e a Tecnologia, I.P., under the scope of the projects UIDB/00297/2020 and UIDP/00297/2020 (Center for Mathematics and Applications). The authors are grateful for the helpful suggestions made by a referee in an initial version of this manuscript. Publisher Copyright: © 2022 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. |
id |
RCAP_9d315126a7644de30268255dee91be8e |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/162154 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Stability of principal components under normal and non-normal parent populations and different covariance structures scenariosPrincipal componentseigenvectorsnonnormalitysimulationstabilityStatistics and ProbabilityModelling and SimulationStatistics, Probability and UncertaintyApplied MathematicsFunding Information: This work is funded by national funds through the FCT–Fundação para a Ciência e a Tecnologia, I.P., under the scope of the projects UIDB/00297/2020 and UIDP/00297/2020 (Center for Mathematics and Applications). The authors are grateful for the helpful suggestions made by a referee in an initial version of this manuscript. Publisher Copyright: © 2022 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.Principal Component Analysis (PCA) is one of the most used multivariate techniques for dimension reduction assuming nowadays a particular relevance due to the increasingly common large datasets. Being mainly used as a descriptive/exploratory tool it does not require any explicit a priori assumption. However, regardless the parent population miss/unknown characterization, sample principal components are often used to characterize the parent population structure, as these are frequently targeted to visualize multivariate datasets on a 2D graphical display or to infer the first two latent dimensions. In this context, although the main goal might not be inferential, sample principal components may fail to provide a valid solution as principal components may vary considerably, depending on the extracted sample. The stability of the PCA solution is here studied considering normal and non-normal parent populations and three covariance structures scenarios. In addition, the effects of the covariance parameter, the dimension and the size of the sample are also investigated via Monte Carlo simulations. This study aims to understand how stability varies with the population and sample features, characterize the conditions under which PCA results are expected to be stable, and study a sample criterion for PCA stability.DM - Departamento de MatemáticaCMA - Centro de Matemática e AplicaçõesRUNBispo, ReginaMarques, Filipe2024-01-11T22:26:12Z20232023-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article18application/pdfhttp://hdl.handle.net/10362/162154eng0094-9655PURE: 47288330https://doi.org/10.1080/00949655.2022.2125971info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T05:44:57Zoai:run.unl.pt:10362/162154Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:58:46.640967Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Stability of principal components under normal and non-normal parent populations and different covariance structures scenarios |
title |
Stability of principal components under normal and non-normal parent populations and different covariance structures scenarios |
spellingShingle |
Stability of principal components under normal and non-normal parent populations and different covariance structures scenarios Bispo, Regina Principal components eigenvectors nonnormality simulation stability Statistics and Probability Modelling and Simulation Statistics, Probability and Uncertainty Applied Mathematics |
title_short |
Stability of principal components under normal and non-normal parent populations and different covariance structures scenarios |
title_full |
Stability of principal components under normal and non-normal parent populations and different covariance structures scenarios |
title_fullStr |
Stability of principal components under normal and non-normal parent populations and different covariance structures scenarios |
title_full_unstemmed |
Stability of principal components under normal and non-normal parent populations and different covariance structures scenarios |
title_sort |
Stability of principal components under normal and non-normal parent populations and different covariance structures scenarios |
author |
Bispo, Regina |
author_facet |
Bispo, Regina Marques, Filipe |
author_role |
author |
author2 |
Marques, Filipe |
author2_role |
author |
dc.contributor.none.fl_str_mv |
DM - Departamento de Matemática CMA - Centro de Matemática e Aplicações RUN |
dc.contributor.author.fl_str_mv |
Bispo, Regina Marques, Filipe |
dc.subject.por.fl_str_mv |
Principal components eigenvectors nonnormality simulation stability Statistics and Probability Modelling and Simulation Statistics, Probability and Uncertainty Applied Mathematics |
topic |
Principal components eigenvectors nonnormality simulation stability Statistics and Probability Modelling and Simulation Statistics, Probability and Uncertainty Applied Mathematics |
description |
Funding Information: This work is funded by national funds through the FCT–Fundação para a Ciência e a Tecnologia, I.P., under the scope of the projects UIDB/00297/2020 and UIDP/00297/2020 (Center for Mathematics and Applications). The authors are grateful for the helpful suggestions made by a referee in an initial version of this manuscript. Publisher Copyright: © 2022 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023 2023-01-01T00:00:00Z 2024-01-11T22:26:12Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/162154 |
url |
http://hdl.handle.net/10362/162154 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
0094-9655 PURE: 47288330 https://doi.org/10.1080/00949655.2022.2125971 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
18 application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799138168120803329 |