In vivo response to starch-based scaffolds designed for bone tissue engineering applications

Detalhes bibliográficos
Autor(a) principal: Salgado, A. J.
Data de Publicação: 2007
Outros Autores: Coutinho, O. P., Reis, R. L., Davies, J. E.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: https://hdl.handle.net/1822/14027
Resumo: Our purpose was to evaluate the in vivo endosseous response to three starch-based scaffolds implanted in rats (n ¼ 54). We implanted the three scaffold groups; a 50/50 (wt %) blend of corn starch and ethylene-vinyl alcohol (SEVA-C), the same composition coated with a biomimetic calcium phosphate (Ca-P) layer (SEVA-C/ CaP), and a 50/50 (wt %) blend of corn starch and cellulose acetate (SCA), all produced by extrusion with blowing agents, into distal femurs proximal to the epiphyseal plate, for 1, 3, or 6 weeks. Our results showed that at 1 week considerable reparative bone formed around all scaffold groups, although the bone was separated from the scaffold by an intervening soft tissue interfacial zone that comprised two distinct compartments: the surface of the scaffold was occupied by multinucleate giant cells and the compartment between these cells and the surrounding bone was occupied by a streaming fibrous-like tissue. The extracellular matrix of the latter was continuous with the extracellular bone matrix itself, labeled positively for osteocalcin and appeared mineralized by backscattered electron imaging. All three scaffolds showed a similar tissue response, with the soft tissue interface diminishing with time. No bone contact was observed with SEVA-C at any time point, only transitory bone contact was observed with SEVA-C/CaP at 3 weeks, but SCA exhibited direct bone contact at 6 weeks where 56.23 6 6.46% of the scaffold surface was occupied by bone. We conclude that all materials exhibited a favorable bony response and that the rapidly forming initial ‘‘connective tissue’’ seen around all scaffolds was a very early form of bone formation.
id RCAP_9d4bd4086650f44ea8954c6b674818a4
oai_identifier_str oai:repositorium.sdum.uminho.pt:1822/14027
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling In vivo response to starch-based scaffolds designed for bone tissue engineering applicationsTissue engineeringIn vivoBoneScaffoldStarchScience & TechnologyOur purpose was to evaluate the in vivo endosseous response to three starch-based scaffolds implanted in rats (n ¼ 54). We implanted the three scaffold groups; a 50/50 (wt %) blend of corn starch and ethylene-vinyl alcohol (SEVA-C), the same composition coated with a biomimetic calcium phosphate (Ca-P) layer (SEVA-C/ CaP), and a 50/50 (wt %) blend of corn starch and cellulose acetate (SCA), all produced by extrusion with blowing agents, into distal femurs proximal to the epiphyseal plate, for 1, 3, or 6 weeks. Our results showed that at 1 week considerable reparative bone formed around all scaffold groups, although the bone was separated from the scaffold by an intervening soft tissue interfacial zone that comprised two distinct compartments: the surface of the scaffold was occupied by multinucleate giant cells and the compartment between these cells and the surrounding bone was occupied by a streaming fibrous-like tissue. The extracellular matrix of the latter was continuous with the extracellular bone matrix itself, labeled positively for osteocalcin and appeared mineralized by backscattered electron imaging. All three scaffolds showed a similar tissue response, with the soft tissue interface diminishing with time. No bone contact was observed with SEVA-C at any time point, only transitory bone contact was observed with SEVA-C/CaP at 3 weeks, but SCA exhibited direct bone contact at 6 weeks where 56.23 6 6.46% of the scaffold surface was occupied by bone. We conclude that all materials exhibited a favorable bony response and that the rapidly forming initial ‘‘connective tissue’’ seen around all scaffolds was a very early form of bone formation.WileyUniversidade do MinhoSalgado, A. J.Coutinho, O. P.Reis, R. L.Davies, J. E.20072007-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttps://hdl.handle.net/1822/14027eng1552-496510.1002/jbm.a.3094617109411info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-21T12:53:25Zoai:repositorium.sdum.uminho.pt:1822/14027Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T19:52:47.012461Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv In vivo response to starch-based scaffolds designed for bone tissue engineering applications
title In vivo response to starch-based scaffolds designed for bone tissue engineering applications
spellingShingle In vivo response to starch-based scaffolds designed for bone tissue engineering applications
Salgado, A. J.
Tissue engineering
In vivo
Bone
Scaffold
Starch
Science & Technology
title_short In vivo response to starch-based scaffolds designed for bone tissue engineering applications
title_full In vivo response to starch-based scaffolds designed for bone tissue engineering applications
title_fullStr In vivo response to starch-based scaffolds designed for bone tissue engineering applications
title_full_unstemmed In vivo response to starch-based scaffolds designed for bone tissue engineering applications
title_sort In vivo response to starch-based scaffolds designed for bone tissue engineering applications
author Salgado, A. J.
author_facet Salgado, A. J.
Coutinho, O. P.
Reis, R. L.
Davies, J. E.
author_role author
author2 Coutinho, O. P.
Reis, R. L.
Davies, J. E.
author2_role author
author
author
dc.contributor.none.fl_str_mv Universidade do Minho
dc.contributor.author.fl_str_mv Salgado, A. J.
Coutinho, O. P.
Reis, R. L.
Davies, J. E.
dc.subject.por.fl_str_mv Tissue engineering
In vivo
Bone
Scaffold
Starch
Science & Technology
topic Tissue engineering
In vivo
Bone
Scaffold
Starch
Science & Technology
description Our purpose was to evaluate the in vivo endosseous response to three starch-based scaffolds implanted in rats (n ¼ 54). We implanted the three scaffold groups; a 50/50 (wt %) blend of corn starch and ethylene-vinyl alcohol (SEVA-C), the same composition coated with a biomimetic calcium phosphate (Ca-P) layer (SEVA-C/ CaP), and a 50/50 (wt %) blend of corn starch and cellulose acetate (SCA), all produced by extrusion with blowing agents, into distal femurs proximal to the epiphyseal plate, for 1, 3, or 6 weeks. Our results showed that at 1 week considerable reparative bone formed around all scaffold groups, although the bone was separated from the scaffold by an intervening soft tissue interfacial zone that comprised two distinct compartments: the surface of the scaffold was occupied by multinucleate giant cells and the compartment between these cells and the surrounding bone was occupied by a streaming fibrous-like tissue. The extracellular matrix of the latter was continuous with the extracellular bone matrix itself, labeled positively for osteocalcin and appeared mineralized by backscattered electron imaging. All three scaffolds showed a similar tissue response, with the soft tissue interface diminishing with time. No bone contact was observed with SEVA-C at any time point, only transitory bone contact was observed with SEVA-C/CaP at 3 weeks, but SCA exhibited direct bone contact at 6 weeks where 56.23 6 6.46% of the scaffold surface was occupied by bone. We conclude that all materials exhibited a favorable bony response and that the rapidly forming initial ‘‘connective tissue’’ seen around all scaffolds was a very early form of bone formation.
publishDate 2007
dc.date.none.fl_str_mv 2007
2007-01-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://hdl.handle.net/1822/14027
url https://hdl.handle.net/1822/14027
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 1552-4965
10.1002/jbm.a.30946
17109411
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Wiley
publisher.none.fl_str_mv Wiley
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799133121420984320