Application of plant–soil feedbacks in the selection of crop rotation sequences

Detalhes bibliográficos
Autor(a) principal: Koyama, Akihiro
Data de Publicação: 2022
Outros Autores: Dias, Teresa, Antunes, Pedro M.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10451/51159
Resumo: Plant–soil feedback (PSF) can be a major driver of plant performance in com- munities, and this concept can be used in selecting crop rotation sequences to maximize agricultural yields. Potential benefits of using PSF in this context include nutrient use optimization, pathogen reduction, and enhancement of mutualisms between crops and microbes. Yet the contributions of these com- bined mechanisms are poorly understood. Here we investigated the relative contributions of these mechanisms using five major crops commonly culti- vated in rotation (alfalfa, canola, maize, soybean, and wheat) under controlled conditions. We trained soil by growing each of the five crops in a “training phase,” and then reciprocally planted the five crops in the trained soils in a “feedback phase.” To tease out soil biota from nutrient effects, we established three treatments: “control” (trained unsterilized soil used in the feedback phases), “biota” (sterilized soil in the feedback phase inoculated with soil biota from the control treatment after the training phase), and “nutrient” (sterilized soils in both phases). Plant–soil feedback for each crop was calculated by com- paring the total biomass of each crop grown in soils trained by each of the four other crops (i.e., in rotation) against total biomass in self-trained soil (i.e., monocropping). We found that PSF values varied among crop combina- tions in all the treatments, but such variation was the greatest in the nutrient treatment. Overall, soil biota feedback tended to be lower, whereas nutrient feedback tended to be greater compared to the unsterilized control soil, suggesting that effects of antagonistic biota outweighed those of beneficial microbes in the biota treatment, and that plants optimized nutrient uptake when the soil microbiome was absent in the nutrient treatment. Furthermore, soils in the nutrient treatment trained by the legume crops (alfalfa and soy- bean) tended to provide the greatest positive feedback, emphasizing the impor- tant legacy of N2 fixers in crop rotation. Taken together, our data demonstrate how nutrients and soil biota can be integral to PSFs among crops, and that assessing PSFs under controlled conditions can serve as a basis to determine the most productive crop rotation sequences prior to field testing.
id RCAP_9d8554628ee3a2cdfb6e4041bb6edfff
oai_identifier_str oai:repositorio.ul.pt:10451/51159
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Application of plant–soil feedbacks in the selection of crop rotation sequencesPlant–soil feedback (PSF) can be a major driver of plant performance in com- munities, and this concept can be used in selecting crop rotation sequences to maximize agricultural yields. Potential benefits of using PSF in this context include nutrient use optimization, pathogen reduction, and enhancement of mutualisms between crops and microbes. Yet the contributions of these com- bined mechanisms are poorly understood. Here we investigated the relative contributions of these mechanisms using five major crops commonly culti- vated in rotation (alfalfa, canola, maize, soybean, and wheat) under controlled conditions. We trained soil by growing each of the five crops in a “training phase,” and then reciprocally planted the five crops in the trained soils in a “feedback phase.” To tease out soil biota from nutrient effects, we established three treatments: “control” (trained unsterilized soil used in the feedback phases), “biota” (sterilized soil in the feedback phase inoculated with soil biota from the control treatment after the training phase), and “nutrient” (sterilized soils in both phases). Plant–soil feedback for each crop was calculated by com- paring the total biomass of each crop grown in soils trained by each of the four other crops (i.e., in rotation) against total biomass in self-trained soil (i.e., monocropping). We found that PSF values varied among crop combina- tions in all the treatments, but such variation was the greatest in the nutrient treatment. Overall, soil biota feedback tended to be lower, whereas nutrient feedback tended to be greater compared to the unsterilized control soil, suggesting that effects of antagonistic biota outweighed those of beneficial microbes in the biota treatment, and that plants optimized nutrient uptake when the soil microbiome was absent in the nutrient treatment. Furthermore, soils in the nutrient treatment trained by the legume crops (alfalfa and soy- bean) tended to provide the greatest positive feedback, emphasizing the impor- tant legacy of N2 fixers in crop rotation. Taken together, our data demonstrate how nutrients and soil biota can be integral to PSFs among crops, and that assessing PSFs under controlled conditions can serve as a basis to determine the most productive crop rotation sequences prior to field testing.WileyRepositório da Universidade de LisboaKoyama, AkihiroDias, TeresaAntunes, Pedro M.2022-02-07T19:09:36Z2022-012022-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10451/51159eng10.1002/eap.2501info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-08T16:55:42Zoai:repositorio.ul.pt:10451/51159Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T22:02:28.695950Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Application of plant–soil feedbacks in the selection of crop rotation sequences
title Application of plant–soil feedbacks in the selection of crop rotation sequences
spellingShingle Application of plant–soil feedbacks in the selection of crop rotation sequences
Koyama, Akihiro
title_short Application of plant–soil feedbacks in the selection of crop rotation sequences
title_full Application of plant–soil feedbacks in the selection of crop rotation sequences
title_fullStr Application of plant–soil feedbacks in the selection of crop rotation sequences
title_full_unstemmed Application of plant–soil feedbacks in the selection of crop rotation sequences
title_sort Application of plant–soil feedbacks in the selection of crop rotation sequences
author Koyama, Akihiro
author_facet Koyama, Akihiro
Dias, Teresa
Antunes, Pedro M.
author_role author
author2 Dias, Teresa
Antunes, Pedro M.
author2_role author
author
dc.contributor.none.fl_str_mv Repositório da Universidade de Lisboa
dc.contributor.author.fl_str_mv Koyama, Akihiro
Dias, Teresa
Antunes, Pedro M.
description Plant–soil feedback (PSF) can be a major driver of plant performance in com- munities, and this concept can be used in selecting crop rotation sequences to maximize agricultural yields. Potential benefits of using PSF in this context include nutrient use optimization, pathogen reduction, and enhancement of mutualisms between crops and microbes. Yet the contributions of these com- bined mechanisms are poorly understood. Here we investigated the relative contributions of these mechanisms using five major crops commonly culti- vated in rotation (alfalfa, canola, maize, soybean, and wheat) under controlled conditions. We trained soil by growing each of the five crops in a “training phase,” and then reciprocally planted the five crops in the trained soils in a “feedback phase.” To tease out soil biota from nutrient effects, we established three treatments: “control” (trained unsterilized soil used in the feedback phases), “biota” (sterilized soil in the feedback phase inoculated with soil biota from the control treatment after the training phase), and “nutrient” (sterilized soils in both phases). Plant–soil feedback for each crop was calculated by com- paring the total biomass of each crop grown in soils trained by each of the four other crops (i.e., in rotation) against total biomass in self-trained soil (i.e., monocropping). We found that PSF values varied among crop combina- tions in all the treatments, but such variation was the greatest in the nutrient treatment. Overall, soil biota feedback tended to be lower, whereas nutrient feedback tended to be greater compared to the unsterilized control soil, suggesting that effects of antagonistic biota outweighed those of beneficial microbes in the biota treatment, and that plants optimized nutrient uptake when the soil microbiome was absent in the nutrient treatment. Furthermore, soils in the nutrient treatment trained by the legume crops (alfalfa and soy- bean) tended to provide the greatest positive feedback, emphasizing the impor- tant legacy of N2 fixers in crop rotation. Taken together, our data demonstrate how nutrients and soil biota can be integral to PSFs among crops, and that assessing PSFs under controlled conditions can serve as a basis to determine the most productive crop rotation sequences prior to field testing.
publishDate 2022
dc.date.none.fl_str_mv 2022-02-07T19:09:36Z
2022-01
2022-01-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10451/51159
url http://hdl.handle.net/10451/51159
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1002/eap.2501
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Wiley
publisher.none.fl_str_mv Wiley
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799134574346764288