Second-order differential equations in the Laguerre-Hahn class

Detalhes bibliográficos
Autor(a) principal: Branquinho, A.
Data de Publicação: 2015
Outros Autores: Moreno, A. Foulquié, Paiva, A., Rebocho, M. N.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10773/15121
Resumo: Laguerre–Hahn families on the real line are characterized in terms of second-order differential equations with matrix coefficients for vectors involving the orthogonal polynomials and their associated polynomials, as well as in terms of second-order differential equation for the functions of the second kind. Some characterizations of the classical families are derived.
id RCAP_9dc0120615c56c2d99d84124ba4c880a
oai_identifier_str oai:ria.ua.pt:10773/15121
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Second-order differential equations in the Laguerre-Hahn classOrthogonal polynomials on the real lineRiccati differential equationSemi-classical functionalsClassical orthogonal polynomialsLaguerre–Hahn families on the real line are characterized in terms of second-order differential equations with matrix coefficients for vectors involving the orthogonal polynomials and their associated polynomials, as well as in terms of second-order differential equation for the functions of the second kind. Some characterizations of the classical families are derived.Elsevier2018-07-20T14:00:51Z2015-08-01T00:00:00Z2015-082016-07-31T12:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/15121eng0168-927410.1016/j.apnum.2015.03.002Branquinho, A.Moreno, A. FoulquiéPaiva, A.Rebocho, M. N.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T11:27:54Zoai:ria.ua.pt:10773/15121Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T02:50:33.117709Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Second-order differential equations in the Laguerre-Hahn class
title Second-order differential equations in the Laguerre-Hahn class
spellingShingle Second-order differential equations in the Laguerre-Hahn class
Branquinho, A.
Orthogonal polynomials on the real line
Riccati differential equation
Semi-classical functionals
Classical orthogonal polynomials
title_short Second-order differential equations in the Laguerre-Hahn class
title_full Second-order differential equations in the Laguerre-Hahn class
title_fullStr Second-order differential equations in the Laguerre-Hahn class
title_full_unstemmed Second-order differential equations in the Laguerre-Hahn class
title_sort Second-order differential equations in the Laguerre-Hahn class
author Branquinho, A.
author_facet Branquinho, A.
Moreno, A. Foulquié
Paiva, A.
Rebocho, M. N.
author_role author
author2 Moreno, A. Foulquié
Paiva, A.
Rebocho, M. N.
author2_role author
author
author
dc.contributor.author.fl_str_mv Branquinho, A.
Moreno, A. Foulquié
Paiva, A.
Rebocho, M. N.
dc.subject.por.fl_str_mv Orthogonal polynomials on the real line
Riccati differential equation
Semi-classical functionals
Classical orthogonal polynomials
topic Orthogonal polynomials on the real line
Riccati differential equation
Semi-classical functionals
Classical orthogonal polynomials
description Laguerre–Hahn families on the real line are characterized in terms of second-order differential equations with matrix coefficients for vectors involving the orthogonal polynomials and their associated polynomials, as well as in terms of second-order differential equation for the functions of the second kind. Some characterizations of the classical families are derived.
publishDate 2015
dc.date.none.fl_str_mv 2015-08-01T00:00:00Z
2015-08
2016-07-31T12:00:00Z
2018-07-20T14:00:51Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/15121
url http://hdl.handle.net/10773/15121
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 0168-9274
10.1016/j.apnum.2015.03.002
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137555223937024